Skip to main content

Advertisement

Log in

Clinical perspectives of BET inhibition in ovarian cancer

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Bromodomain and extra-terminal (BET) proteins are epigenetic readers that bind to acetylated lysines of histones and regulate gene transcription. BET protein family members mediate the expression of various oncogenic drivers in ovarian cancer, such as the MYC and Neuregulin 1 (NRG1) genes. BRD4, the most thoroughly studied member of the BET family, is amplified in a significant subset of high-grade serous carcinomas (HGSC) of the ovary. It has been reported that BET inhibitors can attenuate the proliferation and dissemination of ovarian cancer cells by inhibiting oncogenic pathways, such as the FOXM1 and JAK/STAT pathways. BET inhibition can re-sensitize resistant ovarian cancer cells to already approved anticancer agents, including cisplatin and PARP inhibitors. This synergism was also confirmed in vivo in animal models. These and other preclinical results provide a promising basis for the application of BET inhibitors in ovarian cancer treatment. Currently, Phase I/II clinical trials explore the safety and efficacy profiles of BET inhibitors in various solid tumors, including ovarian tumors. Here, we review current knowledge on the molecular effects and preclinical activities of BET inhibitors in ovarian tumors.

Conclusions

BET proteins have emerged as new druggable targets for ovarian cancer. BET inhibitors may enhance antitumor activity when co-administered with conventional treatment regimens. Results from ongoing Phase I/II studies are anticipated to confirm this notion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2020. CA Cancer J Clin 70, 7–30 (2020)

    Article  Google Scholar 

  2. J. Prat, New insights into ovarian cancer pathology. Ann Oncol 23 (Suppl 10), x111–x117 (2012)

    Article  PubMed  Google Scholar 

  3. U.A. Matulonis, A.K. Sood, L. Fallowfield, B.E. Howitt, J. Sehouli, B.Y. Karlan, Ovarian cancer. Nat Rev Dis Primers 2, 1–22 (2016)

    Article  Google Scholar 

  4. N.H. Chobanian, V.L. Greenberg, J.M. Gass, C.P. Desimone, J.R. Van Nagell, S.G. Zimmer, Histone deacetylase inhibitors enhance paclitaxel-induced cell death in ovarian cancer cell lines independent of p53 status. Anticancer Res 24, 539–545 (2004)

    CAS  PubMed  Google Scholar 

  5. P. Filippakopoulos, J. Qi, S. Picaud, Y. Shen, W.B. Smith, O. Fedorov, E.M. Morse, T. Keates, T.T. Hickman, I. Felletar, M. Philpott, S. Munro, M.R. McKeown, Y. Wang, A.L. Christie, N. West, M.J. Cameron, B. Schwartz, T.D. Heightman, N. La Thangue, C.A. French, O. Wiest, A.L. Kung, S. Knapp, J.E. Bradner, Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. Stathis, F. Bertoni, BET proteins as targets for anticancer treatment. Cancer Discov 8, 24–36 (2018)

    Article  CAS  PubMed  Google Scholar 

  7. M.K. Jang, K. Mochizuki, M. Zhou, H.S. Jeong, J.N. Brady, K. Ozato, The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 19, 523–534 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. R. Zhao, T. Nakamura, Y. Fu, Z. Lazar, D.L. Spector, Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation. Nat Cell Biol 13, 1295–1304 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. Alqahtani, K. Choucair, M. Ashraf, D.M. Hammouda, A. Alloghbi, T. Khan, N. Senzer, J. Nemunaitis, Bromodomain and extra-terminal motif inhibitors: A review of preclinical and clinical advances in cancer therapy. Futur Sci OA 5, FSO372 (2019)

    Article  Google Scholar 

  10. M. Tsume, C. Kimura-Yoshida, K. Mochida, Y. Shibukawa, S. Amazaki, Y. Wada, R. Hiramatsu, K. Shimokawa, I. Matsuo, Brd2 is required for cell cycle exit and neuronal differentiation through the E2F1 pathway in mouse neuroepithelial cells. Biochem Biophys Res Commun 425, 762–768 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. P. Filippakopoulos, S. Knapp, Targeting bromodomains: Epigenetic readers of lysine acetylation. Nat Rev Drug Discov 13, 337–356 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. G.W. Rhyasen, Y. Yao, J. Zhang, A. Dulak, L. Castriotta, K. Jacques, W. Zhao, F. Gharahdaghi, M.M. Hattersley, P.D. Lyne, E. Clark, M. Zinda, S.E. Fawell, G.B. Mills, H. Chen, BRD4 amplification facilitates an oncogenic gene expression program in high-grade serous ovarian cancer and confers sensitivity to BET inhibitors. PLoS One 13, e0200826 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Z. Zhang, P. Ma, Y. Jing, Y. Yan, M.C. Cai, M. Zhang, S. Zhang, H. Peng, Z.L. Ji, W. Di, Z. Gu, W.Q. Gao, G. Zhuang, BET bromodomain inhibition as a therapeutic strategy in ovarian cancer by downregulating foxm1. Theranostics 6, 219–230 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D. Ucar, D.I. Lin, Amplification of the bromodomain-containing protein 4 gene in ovarian high-grade serous carcinoma is associated with worse prognosis and survival. Mol Clin Oncol 3, 1291–1294 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. L. Yang, Y. Zhang, W. Shan, Z. Hu, J. Yuan, J. Pi, Y. Wang, L. Fan, Z. Tang, C. Li, X. Hu, J.L. Tanyi, Y. Fan, Q. Huang, K. Montone, C.V. Dang, L. Zhang, Repression of BET activity sensitizes homologous recombination-proficient cancers to PARP inhibition. Sci Transl Med 9, 400 (2017)

    Article  Google Scholar 

  16. D.H. Jones, D. Lin, Amplification of the NSD3-BRD4-CHD8 pathway in pelvic high-grade serous carcinomas of tubo-ovarian and endometrial origin. Mol Clin Oncol 7, 301–307 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. C. Shen, J.J. Ipsaro, J. Shi, J.P. Milazzo, E. Wang, J.S. Roe, Y. Suzuki, D.J. Pappin, L. Joshua-Tor, C.R. Vakoc, NSD3-short is an adaptor protein that couples BRD4 to the CHD8 chromatin remodeler. Mol Cell 60, 847–859 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A.J. Wilson, M. Stubbs, P. Liu, B. Ruggeri, D. Khabele, The BET inhibitor INCB054329 reduces homologous recombination efficiency and augments PARP inhibitor activity in ovarian cancer. Gynecol Oncol 149, 575–584 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M.G. Baratta, A.C. Schinzel, Y. Zwang, P. Bandopadhayay, C. Bowman-Colin, J. Kutt, J. Curtis, H. Piao, L.C. Wong, A.L. Kung, R. Beroukhim, J.E. Bradner, R. Drapkin, W.C. Hahn, J.F. Liu, D.M. Livingston, An in-tumor genetic screen reveals that the BET bromodomain protein, BRD4, is a potential therapeutic target in ovarian carcinoma. Proc Natl Acad Sci U S A 112, 232–237 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. Y. Yokoyama, H. Zhu, J.H. Lee, A.V. Kossenkov, S.Y. Wu, J.M. Wickramasinghe, X. Yin, K.C. Palozola, A. Gardini, L.C. Showe, K.S. Zaret, Q. Liu, D. Speicher, J.R. Conejo-Garcia, J.E. Bradner, Z. Zhang, A.K. Sood, T. Ordog, B.G. Bitler, R. Zhang, BET inhibitors suppress ALDH activity by targeting ALDH1A1 super-enhancer in ovarian cancer. Cancer Res 76, 6320–6330 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. Momeny, H. Eyvani, F. Barghi, S.H. Ghaffari, S. Javadikooshesh, R. Hassanvand Jamadi, F. Esmaeili, Z. Alishahi, A. Zaghal, D. Bashash, F.S. Samani, P. Ghaffari, A.R. Dehpour, S.M. Tavangar, K. Alimoghaddam, A. Ghavamzadeh, Inhibition of bromodomain and extraterminal domain reduces growth and invasive characteristics of chemoresistant ovarian carcinoma cells. Anti-Cancer Drugs 29, 1011–1020 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. H. Qiu, A.L. Jackson, J.E. Kilgore, Y. Zhong, L.L.Y. Chan, P.A. Gehrig, C. Zhou, V.L. Bae-Jump, JQ1 suppresses tumor growth through downregulating LDHA in ovarian cancer. Oncotarget 6, 6915–6930 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  23. W. Luan, Y. Pang, R. Li, X. Wei, X. Jiao, J. Shi, J. Yu, H. Mao, P. Liu, Akt/mTOR-mediated autophagy confers resistance to bet inhibitor JQ1 in ovarian cancer. Onco Targets Ther 12, 8063–8074 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. K. Bauer, D. Berger, C.C. Zielinski, P. Valent, T.W. Grunt, Hitting two oncogenic machineries in cancer cells: Cooperative effects of the multi-kinase inhibitor ponatinib and the BET bromodomain blockers JQ1 or dBET1 on human carcinoma cells. Oncotarget 9, 26491–26506 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  25. H. Zhu, F. Bengsch, N. Svoronos, M.R. Rutkowski, B.G. Bitler, M.J. Allegrezza, Y. Yokoyama, A.V. Kossenkov, J.E. Bradner, J.R. Conejo-Garcia, R. Zhang, BET Bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep 16, 2829–2837 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Y. Jing, Z. Zhang, P. Ma, S. An, Y. Shen, L. Zhu, G. Zhuang, Concomitant BET and MAPK blockade for effective treatment of ovarian cancer. Oncotarget 7, 2545–2554 (2016)

    Article  PubMed  Google Scholar 

  27. S. Zhang, Y. Zhao, T.M. Heaster, M.A. Fischer, K.R. Stengel, X. Zhou, H. Ramsey, M.M. Zhou, M.R. Savona, M.C. Skala, S.W. Hiebert, BET inhibitors reduce cell size and induce reversible cell cycle arrest in AML. J Cell Biochem 120, 7309–7322 (2018)

    Article  Google Scholar 

  28. J. Pérez-Peña, G. Serrano-Heras, J.C. Montero, V. Corrales-Sánchez, A. Pandiella, A. Ocaña, In silico analysis guides selection of BET inhibitors for triple-negative breast cancer treatment. Mol Cancer Ther 15, 1823–1833 (2016)

    Article  PubMed  Google Scholar 

  29. A.M. Kurimchak, C. Shelton, K.E. Duncan, K.J. Johnson, J. Brown, S. O’Brien, R. Gabbasov, L.S. Fink, Y. Li, N. Lounsbury, M. Abou-Gharbia, W.E. Childers, D.C. Connolly, J. Chernoff, J.R. Peterson, J.S. Duncan, Resistance to BET bromodomain inhibitors is mediated by kinome reprogramming in ovarian cancer. Cell Rep 16, 1273–1286 (2016)

  30. A. Liu, D. Fan, Y. Wang, The BET bromodomain inhibitor i-BET151 impairs ovarian cancer metastasis and improves antitumor immunity. Cell Tissue Res 374, 577–585 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. S.S. Gayle, J.M. Sahni, B.M. Webb, K.L. Weber-Bonk, M.S. Shively, R. Spina, E.E. Bar, M.K. Summers, R.A. Keri, Targeting BCL-xL improves the efficacy of bromodomain and extra-terminal protein inhibitors in triple-negative breast cancer by eliciting the death of senescent cells. J Biol Chem 294, 875–886 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. J.M. Sahni, S.S. Gayle, K.L.W. Bonk, L.C. Vite, J.L. Yori, B. Webb, E.K. Ramos, D.D. Seachrist, M.D. Landis, J.C. Chang, J.E. Bradner, R.A. Keri, Bromodomain and extraterminal protein inhibition blocks growth of triple-negative breast cancers through the suppression of Aurora kinases. J Biol Chem 291, 23756–23768 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J. Lopez, S.W.G. Tait, Mitochondrial apoptosis: Killing cancer using the enemy within. Br J Cancer 112, 957–962 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. T. Bagratuni, N. Mavrianou, N.G. Gavalas, K. Tzannis, C. Arapinis, M. Liontos, M.I. Christodoulou, N. Thomakos, D. Haidopoulos, A. Rodolakis, E. Kastritis, A. Scorilas, M.A. Dimopoulos, A. Bamias, JQ1 inhibits tumour growth in combination with cisplatin and suppresses JAK/STAT signalling pathway in ovarian cancer. Eur J Cancer 126, 125–135 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. C. Li, E. Bonazzoli, L. Zammataro, S. Bellone, J. Choi, W. Dong, G. Menderes, G. Altwerger, C. Han, A. Manzano, A. Bianchi, F. Pettinella, P. Manara, S. Lopez, G. Yadav, F. Riccio, L. Zammataro, B. Zeybek, Y. Yang-Hartwich, N. Buza, P. Hui, S. Wong, A. Ravaggi, E. Bignotti, C. Romani, P. Todeschini, L. Zanotti, V. Zizioli, F. Odicino, S. Pecorelli, L. Ardighieri, D.A. Silasi, B. Litkouhi, E. Ratner, M. Azodi, G.S. Huang, P.E. Schwartz, R.P. Lifton, J. Schlessinger, A.D. Santin, Mutational landscape of primary, metastatic, and recurrent ovarian cancer reveals c-MYC gains as potential target for BET inhibitors. Proc Natl Acad Sci U S A 116, 619–624 (2019)

  36. C.V. Dang, MYC on the path to cancer. Cell 149, 22–35 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. K. Berns, J.J. Caumanns, E.M. Hijmans, A.M.C. Gennissen, T.M. Severson, B. Evers, G.B.A. Wisman, G. Jan Meersma, C. Lieftink, R.L. Beijersbergen, H. Itamochi, A.G.J. van der Zee, S. de Jong, R. Bernards, ARID1A mutation sensitizes most ovarian clear cell carcinomas to BET inhibitors. Oncogene 37, 4611–4625 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. S. Zona, L. Bella, M.J. Burton, G. Nestal de Moraes, E.W.F. Lam, FOXM1: An emerging master regulator of DNA damage response and genotoxic agent resistance. Biochim Biophys Acta - Gene Regul Mech 1839, 1316–1322 (2014)

    Article  CAS  Google Scholar 

  39. I. Wierstra, J. Alves, FOXM1, a typical proliferation-associated transcription factor. Biol Chem 388, 1257–1274 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. Z. Wang, A. Ahmad, Y. Li, S. Banerjee, D. Kong, F.H. Sarkar, Forkhead box M1 transcription factor: A novel target for cancer therapy. Cancer Treat Rev 36, 151–156 (2010)

    Article  CAS  PubMed  Google Scholar 

  41. Cancer Genome Atlas Research Network, Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011)

    Article  Google Scholar 

  42. C.W.M. Roberts, S.H. Orkin, The SWI/SNF complex - chromatin and cancer. Nat Rev Cancer 4, 133–142 (2004)

    Article  CAS  PubMed  Google Scholar 

  43. C. Kadoch, D.C. Hargreaves, C. Hodges, L. Elias, L. Ho, J. Ranish, G.R. Crabtree, Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet 45, 592–601 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. J. Shi, W.A. Whyte, C.J. Zepeda-Mendoza, J.P. Milazzo, C. Shen, J.S. Roe, J.L. Minder, F. Mercan, E. Wang, M.A. Eckersley-Maslin, A.E. Campbell, S. Kawaoka, S. Shareef, Z. Zhu, J. Kendall, M. Muhar, C. Haslinger, M. Yu, R.G. Roeder, M.H. Wigler, G.A. Blobel, J. Zuber, D.L. Spector, R.A. Young, C.R. Vakoc, Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev 27, 2648–2662 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. S.M. Bevill, J.F. Olivares-Quintero, N. Sciaky, B.T. Golitz, D. Singh, A.S. Beltran, N.U. Rashid, T.J. Stuhlmiller, A. Hale, N.J. Moorman, C.M. Santos, S.P. Angus, J.S. Zawistowski, G.L. Johnson, GSK2801, a BAZ2/BRD9 bromodomain inhibitor, synergizes with BET inhibitors to induce apoptosis in triple-negative breast cancer. Mol Cancer Res 17, 1503–1518 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. K.C. Wiegand, S.P. Shah, O.M. Al-Agha, Y. Zhao, K. Tse, T. Zeng, J. Senz, M.K. McConechy, M.S. Anglesio, S.E. Kalloger, W. Yang, A. Heravi-Mussavi, R. Giuliany, C. Chow, J. Fee, A. Zayed, L. Prentice, N. Melnyk, G. Turashvili, A.D. Delaney, J. Madore, S. Yip, A.W. McPherson, G. Ha, L. Bell, S. Fereday, A. Tam, L. Galletta, P.N. Tonin, D. Provencher, D. Miller, S.J.M. Jones, R.A. Moore, G.B. Morin, A. Oloumi, N. Boyd, S.A. Aparicio, I.M. Shih, A.M. Mes-Masson, D.D. Bowtell, M. Hirst, B. Gilks, M.A. Marra, D.G. Huntsman, ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 363, 1532–1543 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. S. Jones, T.L. Wang, I.M. Shih, T.L. Mao, K. Nakayama, R. Roden, R. Glas, D. Slamon, L.A. Diaz, B. Vogelstein, K.W. Kinzler, V.E. Velculescu, N. Papadopoulos, Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228–231 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. S. Ye, J. Yang, Y. You, D. Cao, H. Huang, M. Wu, J. Chen, J. Lang, K. Shen, Clinicopathologic significance of HNF-1b, AIRD1A, and PIK3CA expression in ovarian clear cell carcinoma: A tissue microarray study of 130 cases. Med (Baltimore) 95, e3003 (2016)

    Article  CAS  Google Scholar 

  49. K.C. Helming, X. Wang, B.G. Wilson, F. Vazquez, J.R. Haswell, H.E. Manchester, Y. Kim, G.V. Kryukov, M. Ghandi, A.J. Aguirre, Z. Jagani, Z. Wang, L.A. Garraway, W.C. Hahn, C.W.M. Roberts, ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat Med 20, 251–254 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. T. Fukumoto, P.H. Park, S. Wu, N. Fatkhutdinov, S. Karakashev, T. Nacarelli, A.V. Kossenkov, D.W. Speicher, S. Jean, L. Zhang, T.L. Wang, I.M. Shih, J.R. Conejo-Garcia, B.G. Bitler, R. Zhang, Repurposing pan-HDAC inhibitors for ARID1A-mutated ovarian cancer. Cell Rep 22, 3393–3400 (2018)

  51. Q. Sheng, X. Liu, E. Fleming, K. Yuan, H. Piao, J. Chen, Z. Moustafa, R.K. Thomas, H. Greulich, A. Schinzel, S. Zaghlul, D. Batt, S. Ettenberg, M. Meyerson, B. Schoeberl, A.L. Kung, W.C. Hahn, R. Drapkin, D.M. Livingston, J.F. Liu, An activated ErbB3/NRG1 autocrine loop supports in vivo proliferation in ovarian cancer cells. Cancer Cell 17, 298–310 (2010)

  52. L. Mei, W.C. Xiong, Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 9, 437–452 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. L.M.R. Gilmour, K.G. Macleod, A. McCaig, J.M. Sewell, W.J. Gullick, J.F. Smyth, S.P. Langdon, Neuregulin expression, function, and signaling in human ovarian cancer cells. Clin Cancer Res 8, 3933–3942 (2002)

    CAS  PubMed  Google Scholar 

  54. C.N. Landen, B. Goodman, A.A. Katre, A.D. Steg, A.M. Nick, R.L. Stone, L.D. Miller, P.V. Mejia, N.B. Jennings, D.M. Gershenson, R.C. Bast, R.L. Coleman, G. Lopez-Berestein, A.K. Sood, Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther 9, 3186–3199 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. J. George, K. Alsop, D. Etemadmoghadam, H. Hondow, T. Mikeska, A. Dobrovic, A. DeFazio, G.K. Smyth, D.A. Levine, G. Mitchell, D.D. Bowtell, Nonequivalent gene expression and copy number alterations in high-grade serous ovarian cancers with BRCA1 and BRCA2 mutations. Clin Cancer Res 19, 3474–3484 (2013)

    Article  CAS  PubMed  Google Scholar 

  56. O. Goundiam, P. Gestraud, T. Popova, T. De la Motte Rouge, V. Fourchotte, D. Gentien, P. Hupé, V. Becette, C. Houdayer, S. Roman-Roman, MH. Stern, X. Sastre-Garau, Histo-genomic stratification reveals the frequent amplification/overexpression of CCNE 1 and BRD 4 genes in non-BRCAness high grade ovarian carcinoma. Int J Cancer 137, 1890–1900 (2015)

    Article  CAS  PubMed  Google Scholar 

  57. S. Karakashev, H. Zhu, Y. Yokoyama, B. Zhao, N. Fatkhutdinov, A.V. Kossenkov, A.J. Wilson, F. Simpkins, D. Speicher, D. Khabele, B.G. Bitler, R. Zhang, BET bromodomain inhibition synergizes with PARP inhibitor in epithelial ovarian cancer. Cell Rep 21, 3398–3405 (2017)

  58. L. Liu, S. Cai, C. Han, A. Banerjee, D. Wu, T. Cui, G. Xie, J. Zhang, X. Zhang, E. McLaughlin, M. Yin, F.J. Backes, A. Chakravarti, Y. Zheng, Q.E. Wang, ALDH1A1 contributes to PARP inhibitor resistance via enhancing DNA repair in BRCA2−/− ovarian cancer cells. Mol Cancer Ther 19, 199–210 (2020)

    Article  PubMed  Google Scholar 

  59. C.J. Matheson, D.S. Backos, P. Reigan, Targeting WEE1 kinase in cancer. Trends Pharmacol Sci 37, 872–881 (2016)

  60. R. Vang, D.A. Levine, R.A. Soslow, C. Zaloudek, I.M. Shih, R.J. Kurman, Molecular alterations of TP53 are a defining feature of ovarian high-grade serous carcinoma: A rereview of cases lacking tp53 mutations in the cancer genome atlas ovarian study. Int J Gynecol Pathol 35, 48–55 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. M. Sokka, S. Parkkinen, H. Pospiech, J.E. Syväoja, Function of TopBP1 in genome stability. Subcell Biochem 50, 119–141 (2010)

    Article  CAS  PubMed  Google Scholar 

  62. P. Moudry, K. Watanabe, K.M. Wolanin, J. Bartkova, I.E. Wassing, S. Watanabe, R. Strauss, R.T. Pedersen, V.H. Oestergaard, M. Lisby, M. Andujar-Sanchez, A. Maya-Mendoza, F. Esashi, J. Lukas, J. Bartek, TOPBP1 regulates RAD51 phosphorylation and chromatin loading and determines PARP inhibitor sensitivity. J Cell Biol 212, 281–288 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. R. Ceccaldi, B. Rondinelli, A.D. D’Andrea, Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26, 52–64 (2016)

  64. U. Saini, S. Naidu, A.C. Elnaggar, H.K. Bid, J.J. Wallbillich, K. Bixel, C. Bolyard, A.A. Suarez, B. Kaur, P. Kuppusamy, J. Hays, P.J. Goodfellow, D.E. Cohn, K. Selvendiran, Elevated STAT3 expression in ovarian cancer ascites promotes invasion and metastasis: A potential therapeutic target. Oncogene 36, 168–181 (2017)

    Article  CAS  PubMed  Google Scholar 

  65. L. Teng, S. Peng, H. Guo, H. Liang, Z. Xu, Y. Su, L. Gao, Conditioned media from human ovarian cancer endothelial progenitor cells induces ovarian cancer cell migration by activating epithelial-to-mesenchymal transition. Cancer Gene Ther 22, 518–523 (2015)

    Article  CAS  PubMed  Google Scholar 

  66. Y. Wang, B. Yang, J. Zhao, X. Yu, X. Liu, L. Zhang, Y. Zhang, X. Li, Z. Zhai, Epithelial-mesenchymal transition induced by bone morphogenetic protein 9 hinders cisplatin efficacy in ovarian cancer cells. Mol Med Rep 19, 1501–1508 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  67. J.C. Cheng, N. Auersperg, P.C.K. Leung, TGF-beta induces serous borderline ovarian tumor cell invasion by activating EMT but triggers apoptosis in low-grade serous ovarian carcinoma cells. PLoS One 7, e42436 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. H. Kajiyama, K. Shibata, M. Terauchi, M. Yamashita, K. Ino, A. Nawa, F. Kikkawa, Chemoresistance to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. Int J Oncol 31, 277–283 (2007)

    CAS  PubMed  Google Scholar 

  69. A. Latifi, K. Abubaker, N. Castrechini, A.C. Ward, C. Liongue, F. Dobill, J. Kumar, E.W. Thompson, M.A. Quinn, J.K. Findlay, N. Ahmed, Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile. J Cell Biochem 112, 2850–2864 (2011)

    Article  CAS  PubMed  Google Scholar 

  70. H.A. Kenny, S. Kaur, L.M. Coussens, E. Lengyel, The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J Clin Invest 118, 1367–1379 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. A. Yokoi, Y. Yoshioka, Y. Yamamoto, M. Ishikawa, S.I. Ikeda, T. Kato, T. Kiyono, F. Takeshita, H. Kajiyama, F. Kikkawa, T. Ochiya, Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nat Commun 8, 14470 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  72. Y. Dai, S. Jin, X. Li, D. Wang, The involvement of Bcl-2 family proteins in AKT-regulated cell survival in cisplatin resistant epithelial ovarian cancer. Oncotarget 8, 1354–1368 (2017)

    Article  PubMed  Google Scholar 

  73. A.M. Kurimchak, C. Shelton, C. Herrera-Montavez, K.E. Duncan, J. Chernoff, J.S. Duncan, Intrinsic resistance to MEK inhibition through BET protein–mediated kinome reprogramming in NF1-deficient ovarian cancer. Mol Cancer Res 17, 1721–1734 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. M.H. Nissan, C.A. Pratilas, A.M. Jones, R. Ramirez, H. Won, C. Liu, S. Tiwari, L. Kong, A.J. Hanrahan, Z. Yao, T. Merghoub, A. Ribas, P.B. Chapman, R. Yaeger, B.S. Taylor, N. Schultz, M.F. Berger, N. Rosen, D.B. Solit, Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence. Cancer Res 74, 2340–2350 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. N. Sangha, R. Wu, R. Kuick, S. Powers, D. Mu, D. Fiander, K. Yuen, H. Katabuchi, H. Tashiro, E.R. Fearon, K.R. Cho, Neurofibromin 1 (NF1) defects are common in human ovarian serous carcinomas and co-occur with TP53 mutations. Neoplasia 10, 1362–1372 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. K. Kosior, M. Lewandowska-Grygiel, K. Giannopoulos, Tyrosine kinase inhibitors in hematological malignancies. Postepy Hig Med Dosw 65, 819–828 (2011)

    Article  Google Scholar 

  77. P. Boya, F. Reggiori, P. Codogno, Emerging regulation and functions of autophagy. Nat Cell Biol 15, 713–720 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Y.J. Li, Y.H. Lei, N. Yao, C.R. Wang, N. Hu, W.C. Ye, D.M. Zhang, Z.S. Chen, Autophagy and multidrug resistance in cancer. Chin J Cancer 36, 52 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  79. J.S. Duncan, M.C. Whittle, K. Nakamura, A.N. Abell, A.A. Midland, J.S. Zawistowski, N.L. Johnson, D.A. Granger, N.V. Jordan, D.B. Darr, J. Usary, P.F. Kuan, D.M. Smalley, B. Major, X. He, K.A. Hoadley, B. Zhou, N.E. Sharpless, C.M. Perou, W.Y. Kim, S.M. Gomez, X. Chen, J. Jin, S.V. Frye, H.S. Earp, L.M. Graves, G.L. Johnson, Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149, 307–321 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. X. Jiang, X. Li, W. Li, H. Bai, Z. Zhang, PARP inhibitors in ovarian cancer: Sensitivity prediction and resistance mechanisms. J Cell Mol Med 23, 2303–2313 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. T. Fujisawa, P. Filippakopoulos, Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat Rev Mol Cell Biol 18, 246–262 (2017)

    Article  CAS  PubMed  Google Scholar 

  82. J. Lewin, J.C. Soria, A. Stathis, J.P. Delord, S. Peters, A. Awada, P.G. Aftimos, M. Bekradda, K. Rezai, Z. Zeng, A. Hussain, S. Perez, L.L. Siu, C. Massard, Phase Ib trial with birabresib, a small-molecule inhibitor of bromodomain and extraterminal proteins, in patients with selected advanced solid tumors. J Clin Oncol 36, 3007–3014 (2018)

  83. S.A. Piha-Paul, J.C. Sachdev, M. Barve, P. LoRusso, R. Szmulewitz, S.P. Patel, P.N. Lara, X. Chen, B. Hu, K.J. Freise, D. Modi, A. Sood, J.E. Hutti, J. Wolff, B.H. O'Neil, First-in-human study of mivebresib (ABBV-075), an oral pan-inhibitor of bromodomain and extra terminal proteins, in patients with relapsed/ refractory solid tumors. Clin Cancer Res 25, 6309–6319 (2019)

    Article  CAS  PubMed  Google Scholar 

  84. G. Falchook, S. Rosen, P. LoRusso, J. Watts, S. Gupta, C.C. Coombs, M. Talpaz, R. Kurzrock, M. Mita, R. Cassaday, W. Harb, J. Peguero, D.C. Smith, S.A. Piha-Paul, R. Szmulewitz, M.S. Noel, S. Yeleswaram, P. Liu, J. Switzky, G. Zhou, F. Zheng, A. Mehta, Development of 2 Bromodomain and Extraterminal inhibitors with distinct pharmacokinetic and pharmacodynamic profiles for the treatment of advanced malignancies. Clin Cancer Res 26, 1247–1257 (2020)

  85. S.A. Piha-Paul, C.L. Hann, C.A. French, S. Cousin, I. Brana, P.A. Cassier, V. Moreno, J.S. De Bono, S. Duckworth Harward, G. Ferron-Brady, O. Barbash, A. Wyce, Y. Wu, T. Horner, M. Annan, N.J. Parr, R.K. Prinjha, C.L. Carpenter, J. Hilton, D.S. Hong, N.B. Haas, M.C. Markowski, A. Dhar, P.J. O'Dwyer, G.I. Shapiro, Phase 1 study of Molibresib (GSK525762), a bromodomain and extra-terminal domain protein inhibitor, in NUT carcinoma and other solid tumors. JNCI Cancer Spectr 4, 093 (2019)

  86. S.M. Noordermeer, H. van Attikum, PARP inhibitor resistance: A tug-of-war in BRCA-mutated cells. Trends Cell Biol 29, 820–834 (2019)

    Article  CAS  PubMed  Google Scholar 

  87. A Study of ZEN003694 and Talazoparib in Patients With Triple Negative Breast Cancer, ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/results/NCT03901469 Accessed 28 April 2020

  88. Open-Label Safety and Tolerability Study of INCB057643 in Subjects With Advanced Malignancies, ClinicalTrials.govhttps://www.clinicaltrials.gov/ct2/show/NCT02711137 Accessed 25 April 2020

  89. E. Smolle, V. Taucher, M. Pichler, E. Petru, S. Lax, J. Haybaeck, Targeting signaling pathways in epithelial ovarian cancer. Int J Mol Sci 14, 9536–9555 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  90. A Dose Escalation Study to Investigate the Safety, Pharmacokinetics (PK), Pharmacodynamics (PD), and Clinical Activity of GSK525762 Plus Trametinib in Subjects With Solid Tumors, ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT03266159 Accessed 28 April 2020

  91. J. Hamanishi, M. Mandai, M. Iwasaki, T. Okazaki, Y. Tanaka, K. Yamaguchi, T. Higuchi, H. Yagi, K. Takakura, N. Minato, T. Honjo, S. Fujii, Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A 104, 3360–3365 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. A Study to Evaluate the Safety, Pharmacokinetics and Clinical Activity of RO6870810 and Atezolizumab (PD-L1 Antibody) in Participants With Advanced Ovarian Cancer or Triple Negative Breast Cancer, ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT03292172?term=RO6870810&draw=2&rank=4 Accessed 28 April 2020)

  93. Study of BMS-986158 in Subjects With Select Advanced Cancers, ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02419417 Accessed 28 April 2020)

  94. G.W. Rhyasen, M.M. Hattersley, Y. Yao, A. Dulak, W. Wang, P. Petteruti, I.L. Dale, S. Boiko, T. Cheung, J. Zhang, S. Wen, L. Castriotta, D. Lawson, M. Collins, L. Bao, M.J. Ahdesmaki, G. Walker, G. O'Connor, T.C. Yeh, A.A. Rabow, J.R. Dry, C. Reimer, P. Lyne, G.B. Mills, S.E. Fawell, M.J. Waring, M. Zinda, E. Clark, H. Chen, AZD5153: A novel bivalent BET bromodomain inhibitor highly active against hematologic malignancies. Mol Cancer Ther 15, 2563–2574 (2016)

    Article  CAS  PubMed  Google Scholar 

  95. M. Tanaka, J.M. Roberts, H.S. Seo, A. Souza, J. Paulk, T.G. Scott, S.L. Deangelo, S. Dhe-Paganon, J.E. Bradner, Design and characterization of bivalent BET inhibitors. Nat Chem Biol 12, 1089–1096 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. M.J. Waring, H. Chen, A.A. Rabow, G. Walker, R. Bobby, S. Boiko, R.H. Bradbury, R. Callis, E. Clark, I. Dale, D.L. Daniels, A. Dulak, L. Flavell, G. Holdgate, T.A. Jowitt, A. Kikhney, M. McAlister, J. Mendez, D. Ogg, J. Patel, P. Petteruti, G.R. Robb, M.B. Robers, S. Saif, N. Stratton, D.I. Svergun, W. Wang, D. Whittaker, D.M. Wilson, Y. Yao, Potent and selective bivalent inhibitors of BET bromodomains. Nat Chem Biol 12, 1097–1104 (2016)

    Article  CAS  PubMed  Google Scholar 

  97. C. Ren, G. Zhang, F. Han, S. Fu, Y. Cao, F. Zhang, Q. Zhang, J. Meslamani, Y. Xu, D. Ji, L. Cao, Q. Zhou, K.L. Cheung, R. Sharma, N. Babault, Z. Yi, W. Zhang, M.J. Walsh, L. Zeng, M.M. Zhou, Spatially constrained tandem bromodomain inhibition bolsters sustained repression of BRD4 transcriptional activity for TNBC cell growth. Proc Natl Acad Sci U S A 115, 7949–7954 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. J. Lu, Y. Qian, M. Altieri, H. Dong, J. Wang, K. Raina, J. Hines, J.D. Winkler, A.P. Crew, K. Coleman, C.M. Crews, Hijacking the E3 ubiquitin ligase Cereblon to efficiently target BRD4. Chem Biol 22, 755–763 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. K.M. Sakamoto, K.B. Kim, A. Kumagai, F. Mercurio, C.M. Crews, R.J. Deshaies, Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A 98, 8554–8559 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. L. Bai, B. Zhou, C.Y. Yang, J. Ji, D. McEachern, S. Przybranowski, H. Jiang, J. Hu, F. Xu, Y. Zhao, L. Liu, E. Fernandez-Salas, J. Xu, Y. Dou, B. Wen, D. Sun, J. Meagher, J. Stuckey, D.F. Hayes, S. Li, M.J. Ellis, S. Wang, Targeted degradation of BET proteins in triple-negative breast cancer. Cancer Res 77, 2476–2487 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. M. del M. Noblejas-López, C. Nieto-Jimenez, M. Burgos, M. Gómez-Juárez, J.C. Montero, A. Esparís-Ogando, A. Pandiella, E.M. Galán-Moya, A. Ocaña, Activity of BET-proteolysis targeting chimeric (PROTAC) compounds in triple negative breast cancer. J Exp Clin Cancer Res 38, 383 (2019)

    Article  PubMed  Google Scholar 

  102. S. Laszig, C. Boedicker, T. Weiser, S. Knapp, S. Fulda, The novel dual BET/HDAC inhibitor TW09 mediates cell death by mitochondrial apoptosis in rhabdomyosarcoma cells. Cancer Lett 486, 46–57 (2020)

    Article  CAS  PubMed  Google Scholar 

  103. T. Liu, Y. Wan, Y. Xiao, C. Xia, G. Duan, Dual-target inhibitors based on HDACs: Novel antitumor agents for cancer therapy. J Med Chem 63, 8977–9002 (2020)

  104. S. Amemiya, T. Yamaguchi, Y. Hashimoto, T. Noguchi-Yachide, Synthesis and evaluation of novel dual BRD4/HDAC inhibitors. Bioorganic Med Chem 25, 3677–3684 (2017)

    Article  CAS  Google Scholar 

  105. S.W. Ember, Q.T. Lambert, N. Berndt, S. Gunawan, M. Ayaz, M. Tauro, J.Y. Zhu, P.J. Cranfill, P. Greninger, C.C. Lynch, C.H. Benes, H.R. Lawrence, G.W. Reuther, N.J. Lawrence, E. Schonbrunn, Potent dual BET bromodomain-kinase inhibitors as value-added multitargeted chemical probes & cancer therapeutics. Mol Cancer Ther 16, 1054–1067 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Y. Xu, Q. Wang, K. Xiao, Z. Liu, L. Zhao, X. Song, X. Hu, Z. Feng, T. Gao, W. Zuo, J. Zeng, N. Wang, L. Yu, Novel dual BET and PLK1 inhibitor WNY0824 exerts potent antitumor effects in CRPC by inhibiting transcription factor function and inducing mitotic abnormality. Mol Cancer Ther 19, 1221–1231 (2020)

    Article  CAS  PubMed  Google Scholar 

  107. S.W.J. Ember, J.Y. Zhu, S.H. Olesen, M.P. Martin, A. Becker, N. Berndt, G.I. Georg, E. Schonbrunn, Acetyl-lysine binding site of bromodomain-containing protein 4 (BRD4) interacts with diverse kinase inhibitors. ACS Chem Biol 9, 1160–1171 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. S. Joshi, A.R. Singh, K.X. Liu, T.V. Pham, M. Zulcic, D. Skola, H.B. Chun, C.K. Glass, G.A. Morales, J.R. Garlich, D.L. Durden, SF2523: Dual PI3K/BRD4 inhibitor blocks tumor immunosuppression and promotes adaptive immune responses in cancer. Mol Cancer Ther 18, 1036–1044 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

For this work no specific grants from funding agencies in the public, commercial or not-for-profit sectors were received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flora Zagouri.

Ethics declarations

Declaration of interests

ML has received honoraria from Roche, Astra Zeneca, Astellas, MSD, Janssen, Bristol-Myers-Squibb and IPSEN. KK has received honoraria from Roche, BMS, MSD and IPSEN. MAD has received honoraria through participation in advisory boards from Amgen, Bristol-Myers-Squibb, Celgene, Janssen and Takeda. FZ has received honoraria for lectures and has served as an advisor for Astra-Zeneca, Daiichi, Eli-Lilly, Merck, Novartis, Pfizer and Roche. The remaining authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrikopoulou, A., Liontos, M., Koutsoukos, K. et al. Clinical perspectives of BET inhibition in ovarian cancer. Cell Oncol. 44, 237–249 (2021). https://doi.org/10.1007/s13402-020-00578-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00578-6

Keywords

Navigation