Skip to main content

Advertisement

Log in

In silico transcriptomic mapping of integrins and immune activation in Basal-like and HER2+ breast cancer

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Integrins, transmembrane receptors that mediate cell-extracellular matrix and cell-cell interactions, have been linked to several cancer-associated features. A less explored function of integrins in cancer is their role in leukocyte homing and activation. Understanding their relationship with immune cell infiltrates and immune checkpoints is an area of interest in cancer research.

Methods

The expression of 33 different integrins was evaluated in relation with breast cancer patient outcome using transcriptomic data (Affymetrix dataset, exploratory cohort) and the METABRIC study (validation cohort). The TIMER online tool was used to assess the association of the identified integrin genes with immune cell infiltration, and the TCGA and METABRIC studies to assess correlations between integrin gene expression and genomic signatures of immune activation.

Results

We identified 7 genes coding for integrin α and β subunits, i.e., ITGA4, ITGB2, ITGAX, ITGB7, ITGAM, ITGAL and ITGA8, which predict a favorable prognosis in Basal-like and HER2+ breast cancers. Their expression positively correlated with the presence of immune cell infiltrates within the tumor (dendritic cells, CD4+ T-cells, neutrophils, CD8+ T-cells and B-cells), with markers of T-cell activation and antigen presentation, and with gene signatures of immune surveillance (cytotoxic T lymphocyte activation and IFN gamma signature). By contrast, we found that genes coding for integrins that predicted a detrimental outcome (IBSP, ITGB3BP, ITGB6, ITGB1 and ITGAV) were not associated with any of these parameters.

Conclusions

We identified an integrin signature composed of 7 genes with potential to recognize immune infiltrated and activated Basal-like and HER2+ breast cancers with a favorable prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data are available upon reasonable request.

Abbreviations

APC:

antigen presenting cell

CI:

confidence interval

CTL:

cytotoxic T lymphocyte

DC:

dendritic cells

ECM:

extracellular matrix

FDR:

false discovery rate

HR:

hazard ratio

ICAM:

intercellular adhesion molecule

IFN:

Interferon

KM:

Kaplan-Meier

LAD:

leukocyte adhesion deficiency

LFA:

leukocyte function-associated antigen 1

NK:

natural killer

OS:

overall survival

P:

p-value

PD-1:

programmed cell death protein-1

PD-L1:

programmed cell death protein ligand-1

RFS:

relapse-free survival

TGF-β:

transforming growth factor β

TIMER:

Tumor Immune Estimation Resource

VCAM-1:

vascular intercellular adhesion molecule 1

VLA-4:

very late antigen 4

References

  1. H. Hamidi, J. Ivaska, Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer 18, 533–548 (2018)

    Article  CAS  Google Scholar 

  2. S. Cabodi, P. Di Stefano, M. del Pilar Camacho Leal, A. Tinnirello, B. Bisaro, V. Morello, L. Damiano, S. Aramu, D. Repetto, G. Tornillo, P. Defilippi, Integrins and signal transduction. Adv. Exp. Med. Biol. 674, 43–54 (2010)

  3. B. Luo, C.V. Carman, T.A. Springer, Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619–647 (2007)

    Article  CAS  Google Scholar 

  4. Alday-Parejo, Stupp, Rüegg, Are integrins still practicable targets for anti-cancer therapy? Cancers 11, 978 (2019)

    Article  CAS  Google Scholar 

  5. J.S. Desgrosellier, D.A. Cheresh, Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 10, 9–22 (2010)

    Article  CAS  Google Scholar 

  6. G. Sökeland, U. Schumacher, The functional role of integrins during intra- and extravasation within the metastatic cascade. Mol. Cancer 18, 12 (2019)

    Article  Google Scholar 

  7. L. Seguin, J.S. Desgrosellier, S.M. Weis, D.A. Cheresh, Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 25, 234–240 (2015)

    Article  CAS  Google Scholar 

  8. Brown, Marshall, Integrin-mediated TGFβ activation modulates the tumour microenvironment. Cancers 11, 1221 (2019)

    Article  CAS  Google Scholar 

  9. H. Harjunpää, M. Llort Asens, C. Guenther, S.C. Fagerholm, Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol. 10, 1078 (2019)

    Article  Google Scholar 

  10. C.L. Abram, C. A. Lowell, The ins and outs of leukocyte integrin signaling. Annu. Rev. Immunol. 27, 339–362 (2009)

  11. Y. Zhang, H. Wang, Integrin signalling and function in immune cells. Immunology 135, 268–275 (2012)

    Article  CAS  Google Scholar 

  12. N. Harbeck, F. Penault-Llorca, J. Cortes, M. Gnant, N. Houssami, P. Poortmans, K. Ruddy, J. Tsang, F. Cardoso, Breast cancer. Nat. Rev. Dis. Prim. 5, 66 (2019)

    Article  Google Scholar 

  13. G. Stelzer, N. Rosen, I. Plaschkes, S. Zimmerman, M. Twik, S. Fishilevich, T.I. Stein, R. Nudel, I. Lieder, Y. Mazor, S. Kaplan, D. Dahary, D. Warshawsky, Y. Guan-Golan, A. Kohn, N. Rappaport, M. Safran, D. Lancet, The genecards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 54, 1.30.1–1.30.33 (2016)

  14. GeneCards – the human gene database [Internet]. [cited 15 Jun 2020]. Available: http://www.genecards.org/

  15. E.A. Bruford, B. Braschi, P. Denny, T.E.M. Jones, R.L. Seal, S. Tweedie, Guidelines for human gene nomenclature. Nat. Genet. 52, 754–758 (2020)

    Article  CAS  Google Scholar 

  16. HUGO Gene Nomenclature Committee webpage [Internet]. [cited 15 Jun 2020]. Available: https://www.genenames.org

  17. Z. Mihály, B. Győrffy, Improving pathological assessment of breast cancer by employing array-based transcriptome analysis. Microarrays 2, 228–242 (2013)

  18. B. Györffy, A. Lanczky, A.C. Eklund, C. Denkert, J. Budczies, Q. Li, Z. Szallasi, An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res. Treat. 123, 725–731 (2010)

    Article  Google Scholar 

  19. Kaplan-Meier Plotter [Internet]. [cited 15 Jun 2020]. Available: https://kmplot.com

  20. P.-K. Raj-Kumar, J. Liu, J. A. Hooke, A. J. Kovatich, L. Kvecher, C. D. Shriver, H. Hu, PCA-PAM50 improves consistency between breast cancer intrinsic and clinical subtyping reclassifying a subset of luminal A tumors as luminal B. Sci. Rep. 9, 7956 (2019)

  21. A.K. Falck, A. Röme, M. Fernö, H. Olsson, G. Chebil, P.O. Bendahl, L. Rydén, St Gallen molecular subtypes in screening-detected and symptomatic breast cancer in a prospective cohort with long-term follow-up. Br. J. Surg. 103, 513–523 (2016)

    Article  CAS  Google Scholar 

  22. T. Li, J. Fan, B. Wang, N. Traugh, Q. Chen, J.S. Liu, B. Li, X.S. Liu, A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 77, e108–e110 (2017)

    Article  CAS  Google Scholar 

  23. TIMER: Tumor IMmune Estimation Resource [Internet]. [cited 18 Jun 2020]. Available: http://timer.cistrome.org/

  24. M. Ayers, J. Lunceford, M. Nebozhyn, E. Murphy, A. Loboda, D.R. Kaufman, A. Albright, J.D. Cheng, S.P. Kang, V. Shankaran, S.A. Piha-Paul, J. Yearley, T.Y. Seiwert, A. Ribas, T.K. McClanahan, IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017)

    Article  Google Scholar 

  25. M.S. Rooney, S.A. Shukla, C.J. Wu, G. Getz, Hacohen, molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015)

    Article  CAS  Google Scholar 

  26. P. Jiang, S. Gu, D. Pan, J. Fu, A. Sahu, X. Hu, Z. Li, N. Traugh, X. Bu, B. Li, J. Liu, G.J. Freeman, M.A. Brown, K.W. Wucherpfennig, X.S. Liu, Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018)

    Article  CAS  Google Scholar 

  27. B.D. Lehmann, J.A. Bauer, X. Chen, M.E. Sanders, A.B. Chakravarthy, Y. Shyr, J.A. Pietenpol, Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750–2767 (2011)

    Article  CAS  Google Scholar 

  28. A.R. Cortazar, V. Torrano, N. Martín-Martín, A. Caro-Maldonado, L. Camacho, I. Hermanova, E. Guruceaga, L.F. Lorenzo-Martín, R. Caloto, R.R. Gomis, I. Apaolaza, V. Quesada, J. Trka, A. Gomez-Muñoz, S. Vincent, X.R. Bustelo, F.J. Planes, A.M. Aransay, A. Carracedo, CANCERTOOL: A visualization and representation interface to exploit cancer datasets. Cancer Res. 78, 6320–6328 (2018)

    Article  CAS  Google Scholar 

  29. CANCERTOOL [Internet]. [cited 18 Jun 2020]. Available: http://web.bioinformatics.cicbiogune.es/CANCERTOOL/index.html

  30. A. Alcaraz-Sanabria, M. Baliu-Piqué, C. Saiz-Ladera, K. Rojas, A. Manzano, G. Marquina, A. Casado, F.J. Cimas, P. Pérez-Segura, A. Pandiella, B. Gyorffy, A. Ocana, Genomic signatures of immune activation predict outcome in advanced stages of ovarian cancer and basal-like breast tumors. Front. Oncol. 9, 1–10 (2020)

    Article  Google Scholar 

  31. J. Pérez-Pena, J. Tibor Fekete, R. Páez, M. Baliu-Piqué, J. García-Saenz, V. García-Barberán, A. Manzano, P. Pérez-Segura, A. Esparis-Ogando, A. Pandiella, B. Gyorffy, A. Ocana, A transcriptomic immunologic signature predicts favorable outcome in neoadjuvant chemotherapy treated triple negative breast tumors. Front. Immunol. 10, 1–9 (2019)

    Article  Google Scholar 

  32. B.D. Lehmann, B. Jovanović, X. Chen, M.V. Estrada, K.N. Johnson, Y. Shyr, H.L. Moses, M.E. Sanders, J.A. Pietenpol, Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One 11, e0157368 (2016)

    Article  Google Scholar 

  33. A. Ribas, J.D. Wolchok, Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018)

    Article  CAS  Google Scholar 

  34. S. Gettinger, L. Horn, D. Jackman, D. Spigel, S. Antonia, M. Hellmann, J. Powderly, R. Heist, L.V. Sequist, D.C. Smith, P. Leming, W.J. Geese, D. Yoon, A. Li, J. Brahmer, Five-year follow-up of nivolumab in previously treated advanced non–small-cell lung cancer: Results from the CA209-003 study. J. Clin. Oncol. 36, 1675–1684 (2018)

    Article  CAS  Google Scholar 

  35. P. Schmid, S. Adams, H.S. Rugo, A. Schneeweiss, C.H. Barrios, H. Iwata, V. Dieras, R. Hegg, S.A. Im, G. Shaw, V. Wright, L. Henschel, S.Y. Molinero, R. Chui, A. Funke, E.P. Husain, S. Winer, Loi, L.A. Emens, Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379, 2108–2121 (2018)

    Article  CAS  Google Scholar 

  36. P. Bonaventura, T. Shekarian, V. Alcazer, J. Valladeau-Guilemond, S. Valsesia-Wittmann, S. Amigorena, C. Caux, S. Depil, Cold tumors: a therapeutic challenge for immunotherapy. Front. Immunol. 10, 1–10 (2019)

  37. G.T. Gibney, L.M. Weiner, M.B. Atkins, Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17, e542–e551 (2016)

    Article  CAS  Google Scholar 

  38. A. Ocana, A. Pandiella, Targeting oncogenic vulnerabilities in triple negative breast cancer: Biological bases and ongoing clinical studies. Oncotarget 8, 22218–22234 (2017)

    Article  Google Scholar 

  39. A. Marra, G. Viale, G. Curigliano, Recent advances in triple negative breast cancer: The immunotherapy era. BMC Med. 17, 1–9 (2019)

    Article  Google Scholar 

  40. Planes-Laine, Rochigneux, Bertucci, Chrétien, Viens, Sabatier, Gonçalves, PD-1/PD-L1 Targeting in breast cancer: the first clinical evidences are emerging. A literature review. Cancers 11, 1033 (2019)

  41. R. Sackstein, T. Schatton, S.R. Barthel, T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. Lab. Invest. 97, 669–697 (2017)

  42. P. Alcaide, S. Auerbach, F.W. Luscinskas, Neutrophil recruitment under shear flow: it’s all about endothelial cell rings and gaps. Microcirculation 16, 43–57 (2009)

    Article  CAS  Google Scholar 

  43. B.L. Walling, M. Kim, LFA-1 in T cell migration and differentiation. Front. Immunol. 9, 952 (2018)

    Article  Google Scholar 

  44. T.K. Kishimoto, N. Hollander, T.M. Roberts, D.C. Anderson, T.A. Springer, Heterogeneous mutations in the β subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency. Cell 50, 193–202 (1987)

    Article  CAS  Google Scholar 

  45. M. Baiula, S. Spampinato, L. Gentilucci, A. Tolomelli, Novel ligands targeting α4β1 integrin: therapeutic applications and perspectives. Front. Chem. 7, 1–12 (2019)

  46. M. Vicente-Manzanares, F. Sánchez-Madrid, Targeting the integrin interactome in human disease. Curr. Opin. Cell Biol. 55, 17–23 (2018)

    Article  CAS  Google Scholar 

  47. M.M. Morrison, Leukocyte beta2-integrins; Genes and disease. J. Genet. Syndr. Gene Ther. 4, 154 (2013)

  48. I. Dotan, M. Allez, S. Danese, M. Keir, S. Tole, J. McBride, The role of integrins in the pathogenesis of inflammatory bowel disease: Approved and investigational anti-integrin therapies. Med. Res. Rev. 40, 245–262 (2020)

    Article  CAS  Google Scholar 

  49. J.Z. Kechagia, J. Ivaska, P. Roca-Cusachs, Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019)

    Article  CAS  Google Scholar 

  50. K.M. Moore, G.J. Thomas, S.W. Duffy, J. Warwick, R. Gabe, P. Chou, I.O. Ellis, A.R. Green, S. Haider, K. Brouilette, A. Saha, S. Vallath, R. Bowen, C. Chelala, D. Eccles, W.J. Tapper, A.M. Thompson, P. Quinlan, L. Jordan, C. Gillett, A. Brentnall, S. Violette, P.H. Weinreb, J. Kendrew, S.T. Barry, I.R. Hart, J.L. Jones, J.F. Marshall, Therapeutic targeting of integrin αvβ6 in breast cancer. J. Natl. Cancer Inst. 106, dju169 (2014)

    Article  Google Scholar 

  51. S. Giampieri, C. Manning, S. Hooper, L. Jones, C.S. Hill, E. Sahai, Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat. Cell Biol. 11, 1287–1296 (2009)

    Article  CAS  Google Scholar 

  52. M.D. Allen, G.J. Thomas, S. Clark, M.M. Dawoud, S. Vallath, S.J. Payne, J.J. Gomm, S.A. Dreger, S. Dickinson, D.R. Edwards, C.J. Pennington, I. Sestak, J. Cuzick, J.F. Marshall, I.R. Hart, J.L. Jones, Altered microenvironment promotes progression of preinvasive breast cancer: myoepithelial expression of v 6 integrin in DCIS Identifies high-risk patients and predicts recurrence. Clin. Cancer Res. 20, 344–357 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Instituto de Salud Carlos III (PI19/00808), ACEPAIN, Diputación de Albacete, CIBERONC and CRIS Cancer Foundation (to A. Ocaña) and the Ministry of Economy and Competitiveness of Spain (BFU2015-71371-R), the Instituto de Salud Carlos III through the Spanish Cancer Centers Network Program (RD12/0036/0003) and CIBERONC, the scientific foundation of the AECC and the CRIS Foundation (to A. Pandiella). Our laboratories receive support from the European Community through the regional development funding program (FEDER). BG was supported by a 2018 − 2.1.17-TET-KR-00001 grant and by the Higher Education Institutional Excellence Programme (2020 − 4.1.1.-TKP2020) of the Ministry for Innovation and Technology of Hungary, within the framework of the Bionic thematic programme of the Semmelweis University.

Author information

Authors and Affiliations

Authors

Contributions

K.R., M.B.P. and A.O. conceived and designed the study. K.R., M.B.P., A.M., C.S.L and B.G. searched the data and performed the analyses. M.B.P., A.O., K.R., A.M., C.S.L, V.G.B, F.C., P.P.S, A.P. and B.G wrote the manuscript. All authors reviewed, included modifications and approved the final version of the manuscript.

Corresponding author

Correspondence to Alberto Ocana.

Ethics declarations

Conflict of interest

A.O. receives funding from Entrechem, travel expenses from Merck and advisory board fees from Daiichi Sankyo. P.P.S. receives funding from Merck and MSD. A.P. receives consultancy fees from Daiichi Sankyo.

Ethics approval and consent to participate

This study does not involve human participants or experimental animal models.

Consent for publication

This manuscript does not contain personal and/or medical information on identifiable living individuals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2.36 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, K., Baliu-Piqué, M., Manzano, A. et al. In silico transcriptomic mapping of integrins and immune activation in Basal-like and HER2+ breast cancer. Cell Oncol. 44, 569–580 (2021). https://doi.org/10.1007/s13402-020-00583-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00583-9

Keywords

Navigation