Skip to main content
Log in

Effect of biochar and compost on cadmium bioavailability and its uptake by wheat–rice cropping system irrigated with untreated sewage water: a field study

  • S. I. BIOCHAR
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The cadmium (Cd) uptake and accumulation in the cereal crops like wheat and rice are a serious concern in recent years. Application of various organic amendments in Cd-contaminated soil is an effective technique in management of crop growth and health as organic amendments not only promote plant’s growth but also check Cd translocation in plants. For this purpose, 3 organic amendments (wheat straw biochar (WSB), cotton stick biochar (CSB), and compost comp) were applied @ 0.5% (under randomized complete block design with 4 replicates) in sewage water fed Cd-contaminated soil for effective locking of Cd in soil being cultivated with wheat and rice. The experiment was completed in almost 1 year (December 2014 to November 2015). Our results revealed that all amendments can enhance plant growth and physiology and decrease soil bioavailable Cd contents, but WSB was most prominent among 3 applied. Our results conclude that WSB can enhance straw yield (29.20 and 26.78% for wheat and rice) and grain yield (22.69% and 26.70%) and boast all physiological attributes (chlorophyll contents, stomatal/substomatal conductance, photosynthetic and transpiration rate). Application of WSB decreased post-harvest bioavailable soil Cd contents after wheat and rice crops to 56.37, 48.99% and 7.63, 26.78% in 0–15-cm and 15–30-cm soil depths, respectively. The WSB also decreased Cd translocation in grain, thus helping in decreasing the health risk index (HRI) associated with Cd-contaminated grain consumptions. For economics, amendment application in wheat crops increases its cost, so the benefit–cost ratio was observed to be less than 1. But for upcoming cropping seasons, residues of amendments will still be actively influencing plant growth and yield, so we expect a net higher benefit–cost ratio proving long-lasting use of amendments (especially WSB) a net beneficial approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgments

This work is taken from a thesis published by Maqsooda Waqar and Mr. Shahjahan. We would like to formally acknowledge UAF for the necessary provision of finance, working space, and required materials for research. We would also like to acknowledge Dr. Muhammad Farooq Qayyum who assisted us in the formulation of biochar at the BZU station. We also like to acknowledge the farm owners at Multan who assisted us in different field operations during our research.

Funding

The finance for research execution was provided by the host university (UAF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Zia ur Rehman, Muhammad Rizwan or Shafaqat Ali.

Additional information

This article is part of the Topical Collection on Implications of Biochar Application to Soil Environment under Arid Conditions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ur Rehman, M.Z., Waqar, M., Bashir, S. et al. Effect of biochar and compost on cadmium bioavailability and its uptake by wheat–rice cropping system irrigated with untreated sewage water: a field study. Arab J Geosci 14, 135 (2021). https://doi.org/10.1007/s12517-020-06383-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-06383-7

Keywords

Navigation