Next Article in Journal
Quantitative Cryo-TEM Reveals New Structural Details of Doxil-Like PEGylated Liposomal Doxorubicin Formulation
Next Article in Special Issue
Application of Dendrimers for Treating Parasitic Diseases
Previous Article in Journal
Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery
Previous Article in Special Issue
Peptides and Dendrimers: How to Combat Viral and Bacterial Infections
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Erratum

Erratum: Sanz del Olmo, N.; et al. Antioxidant and Antibacterial Properties of Carbosilane Dendrimers Functionalized with Polyphenolic Moieties. Pharmaceutics 2020, 12, 698

by
Natalia Sanz del Olmo
1,2,3,†,
Cornelia E. Peña González
1,2,3,†,
Daniel Rojas
3,4,5,
Rafael Gómez
1,2,3,
Paula Ortega
1,2,3,*,
Alberto Escarpa
3,4,6 and
Francisco Javier de la Mata
1,2,3,*
1
Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), 28871 Alcalá de Henares, Spain
2
Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
3
Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, 28034 Madrid, Spain
4
Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, 28805 Madrid, Spain
5
Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo, 64100 Teramo, Italy
6
Institute in Chemistry “Andrés M. del Río” (IQAR), 28871 Alcalá de Henares, Spain
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Pharmaceutics 2021, 13(1), 121; https://doi.org/10.3390/pharmaceutics13010121
Submission received: 18 October 2020 / Accepted: 7 January 2021 / Published: 19 January 2021
(This article belongs to the Special Issue Dendrimers and Dendritic Materials against Infectious Diseases)
Due to an error during production, in Section 2.1, letters that were in italics refer to the H or C atom that corresponds to the chemical displacement in NMR have not been fully displayed. The corrected part should be:

2. Materials and Methods

2.1. Synthesis and Characterization of Polyphenolic Dendrimers (16)

All reactions were carried out under an inert atmosphere and solvents of reactions were bought in dry conditions. NMR experiments were carried out on a Varian 500 Hz instrument. Chemical shifts (δ) are given in ppm. As a reference, deuterated methanol solvent (CD3OD) was used. Assignment of resonances was done from HSQC, HMBC, and COSY NMR experiments. Elemental analyses were performed on a LECO CHNS-932 instrument. Mass spectra were obtained using the ESI-TOF technique from an Agilent 6210 TOF LC/MS instrument in MeOH, and ACN/H2O 0.1% formic acid as the mobile phase.
Spectra obtained through the different techniques for the new compounds described in this work are collected in the Supplementary Materials (Figures S1–S42).

2.1.1. Synthesis of G1-[Si(CH2)3NH(CO)CH=CHCH2Ph(OH)(OCH3))]4 (1)

To achieve the synthesis of compound 1, the activation of ferulic acid (179.0 mg, 0.922 mmol) with EDCI·HCl (176.7 mg, 0.922 mmol) and HOBt (124.6 mg, 0.922 mmol), using dry DMF as solvent for the reaction, was carried out in the first place. The mixture was stirred at room temperature for one hour. Afterwards, a DMF solution mixture of dendrimer functionalized with amine groups G1-[Si(CH2)3NH2]4 (127.0 mg, 0.192 mmol) and NEt3 (0.768 mmol) was added dropwise under stirring and at 0 °C. After five minutes in these conditions, the mixture was kept at 60 °C, overnight. The compound was purified by size exclusion chromatography in DMF, obtaining compound 1 as a brown solid (178.4 mg, 68%). 1H-NMR (CD3OD): δ (ppm) 0.00 (s, 24H, NHCH2CH2CH2Si(CH3)2), 0.51–0.67 (m, overlapping of signals, 24H, SiCH2CH2CH2Si and NHCH2CH2CH2Si(CH3)2), 1.39 (m, 8H, SiCH2CH2CH2Si), 1.57 (m, 8H, NHCH2CH2CH2Si(CH3)2), 3.29 (m, 8H, NHCH2CH2CH2Si(CH3)2), 3.88 (s, 12H, OCH3), 6.48 (d, 4H, 3J(H-H) = 15.7 Hz, PhCH=CH(CO)NH), 6.81 (dd, 4H, 3J(H-H) = 8.2 Hz, 5J(H-H) = 1.8 Hz, 1HAr, ortho-OH), 7.04 (d, 4H, 3J(H-H) = 8.2 Hz, 1HAr, para-OCH3), 7.12 (d, 4H, 5J(H-H) = 1.8 Hz, 1HAr, ortho-OCH3), 7.47 (d, 4H, 3J(H-H) = 15.7 Hz, PhCH=CH(CO)NH). 13C-NMR (CD3OD): δ (ppm) −3.1 ((CH3)2SiCH2CH2CH2NH), 13.6 ((CH3)2SiCH2CH2CH2NH), 18.6, 19.9, 21.1 (SiCH2CH2CH2Si), 25.2 ((CH3)2SiCH2CH2CH2NH), 43.9 ((CH3)2SiCH2CH2CH2NH), 56.4 (OCH3), 111.6 (CAr, ortho-OCH3), 116.5 (CAr, ortho-OH), 118.9 (CAr, PhCH=CH(CO)NH), 123.2, (CAr, para-OCH3), 128.3 (Cipso, para-OH), 142.0 (PhCH=CH(CO)NH), 149.3 (Cipso), 149.8 (Cipso), 169.1 (NHC=O). {1H-15N}-HMBC-NMR (CD3OD): δ (ppm) −259.4 (NHC=O). MS: [M + H]+ = 1366.7266 u (Calc. 1366.7264 u), [M + Na]+ = 1388.7061 u (Calc. 1388.7063 u). Elemental Analysis (%): Calc for C72H112N4O12Si5 (1366.13 g/mol). C, 63.30; H, 8.26; N, 4.10. Exp.: C, 62.9; H, 8.26; N, 5.05.

2.1.2. Synthesis of G1-[Si(CH2)3NH(CO)CH=CHCH2Ph(OH)2)]4 (2)

Dendrimer 2 was prepared through the same method as described for 1 by using the following reagents: caffeic acid (255.1 mg, 1.416 mmol), EDCI·HCl (271.4 mg, 1.416 mmol), HOBt (191.3 mg, 1.416 mmol), G1-[Si(CH2)3NH2]2 (195.3 mg, 0.295 mmol) and NEt3 (1.180 mmol). Compound 2 was obtained as a brown solid (231.9 mg, 61%). 1H-NMR (CD3OD): δ (ppm) −0.04 (s, 24H, NHCH2CH2CH2Si(CH3)2), 0.48–0.67 (m, overlapping of signals, 24H, SiCH2CH2CH2Si and NHCH2CH2CH2Si(CH3)2), 1.36 (m, 8H, SiCH2CH2CH2Si), 1.53 (m, 8H, NHCH2CH2CH2Si(CH3), 3.24 (m, 8H, NHCH2CH2CH2Si(CH3)2), 6.37 (d, 4H, 3J(H-H) = 15.7 Hz, PhCH=CH(CO)NH), 6.75 (d, 4H, 3J(H-H) = 8.2 Hz, 1HAr, meta-CH=CH), 6.89 (dd, 4H, 3J(H-H) = 8.2 Hz, 5J(H-H) = 2.0 Hz, 1HAr, ortho-CH=CH), 7.00 (d, 4H, 5J(H-H) = 2.0 Hz, 1HAr, ortho-CH=CH, ortho-OH), 7.38 (d, 4H, 3J(H-H) = 15.7 Hz, PhCH=CH(CO)NH). 13C-NMR (CD3OD): δ (ppm) −3.1 ((CH3)2SiCH2CH2CH2NH), 13.6 ((CH3)2SiCH2CH2CH2NH), 18.5, 19.9, 21.0 (SiCH2CH2CH2Si), 25.2 ((CH3)2SiCH2CH2CH2NH), 43.9 ((CH3)2SiCH2CH2CH2NH), 115.1 (CAr, ortho-OH, ortho-CH=CH), 116.5 (CAr, meta-CH=CH), 118.5 (PhCH=CH(CO)NH), 122.1, (CAr, ortho-CH=CH), 128.3 (Cipso, meta-OH, para-OH), 142.1 (PhCH=CH(CO)NH), 146.7 (Cipso), 148.7 (Cipso), 169.2 (NHC=O). {1H-15N}-HMBC-NMR (CD3OD): δ (ppm) −259.5 (NHC=O). MS: [M + H]+ = 1310.6618 u (Calc. 1310.6670 u), [M + Na]+ = 1332.6431 u (Calc. 1332.6433 u). Elemental Analysis (%): Calc for C68H104N4O12Si5 (1310.02 g/mol). C, 62.35; H, 8.00; N, 4.28. Exp.: C, 60.23; H, 7.52; N, 4.50.

2.1.3. Synthesis of G1-[Si(CH2)3NH(CO)Ph(OH)3]4 (3)

Dendrimer 3 was prepared through the same method as described for 1 by using the following reagents: gallic acid (252.9 mg, 1.344 mmol), EDCI·HCl (257.6 mg, 1.344 mmol), HOBt (181.6 mg, 1.344 mmol), G1-[Si(CH2)3NH2]4 (185.0 mg, 0.280 mmol) and NEt3 (1.120 mmol). Compound 3 was obtained as a brown solid (248.9 mg, 70%). 1H-NMR (CD3OD): δ (ppm) 0.00 (s, 24H, NHCH2CH2CH2Si(CH3)2), 0.46–0.71 (m, overlapping of signals, 24H, SiCH2CH2CH2Si and NHCH2CH2CH2Si(CH3)2), 1.40 (m, 8H, SiCH2CH2CH2Si), 1.59 (m, 8H, NHCH2CH2CH2Si(CH3), 3.31 (m, 8H, NHCH2CH2CH2Si(CH3)2), 6.88 (s, 8H, HAr), 7.07–7.32 (m, overlapping of signals, 16H, NH and Ph(OH)). 13C-NMR (CD3OD): δ (ppm) −3.1 ((CH3)2SiCH2CH2CH2NH), 13.6 ((CH3)2SiCH2CH2CH2NH), 18.6, 19.9, 21.1 (SiCH2CH2CH2Si), 25.2 ((CH3)2SiCH2CH2CH2NH), 44.3 ((CH3)2SiCH2CH2CH2NH), 107.8 (CAr, ortho-OH), 126.4 (Cipso, para-OH), 146.6 (Cipso), 170.5 (NHC=O). {1H-15N}-HMBC-NMR (CD3OD): δ (ppm) −267.0 (NHC=O). MS: [M + H]+ = 1269.5762 u (Calc. 1269.5740 u). Elemental Analysis (%): Calc for C60H96N4O16Si5 (1269.87 g/mol). C, 56.75; H, 7.62; N, 4.41. Exp.: C, 56.60; H, 7.38; N, 4.95.

2.1.4. Synthesis of G2-[Si(CH2)3NH(CO)CH=CHCH2Ph(OH)(OCH3))]8 (4)

Dendrimer 4 was prepared through the same method as described for 1 by using the following reagents: ferulic acid (259.5 mg, 1.336 mmol), EDCI·HCl (255.6 mg, 1.336 mmol), HOBt (180.6 mg, 1.366 mmol), G2-[Si(CH2)3NH2]8 (166.0 mg, 0.139 mmol) and NEt3 (1.112 mmol). Compound 4 was obtained as a brown solid (296.3 mg, 70%). 1H-NMR (CD3OD): δ (ppm) −0.03 (s, 12H, CH3(CH2CH2CH2Si)2), 0.00 (s, 48H, -(CH3)2SiCH2CH2CH2NH), 0.48–0.70 (m, overlapping of signals, 64H, -SiCH2CH2CH2Si, CH3Si(CH2CH2CH2Si)2 and (CH3)2SiCH2CH2CH2NH), 1.30–1.47, (m, 24H, overlapping of signals, SiCH2CH2CH2Si and CH3Si(CH2CH2CH2Si)2), 1.52–1.62 (m, 16H, (CH3)2SiCH2CH2CH2NH), 3.29 (m, 16H, (CH3)2SiCH2CH2CH2NH), 3.86 (s, 24H, OCH3), 6.48 (d, 8H, 3J(H-H) = 16.2 Hz, PhCH=CH(CO)NH), 6.80 (d, 8H, 3J(H-H) = 7.9 Hz, 1HAr, ortho-OH), 7.02 (d, 8H, 3J(H-H) = 7.9 Hz, 1HAr, para-OCH3), 7.10 (s, 8H, 1HAr, ortho-OCH3), 7.47 (d, 8H, 3J(H-H) = 16.2 Hz, PhCH=CH(CO)NH). 13C-NMR (CD3OD): δ (ppm) −4.1 ((CH3)2SiCH2CH2CH2NH), −2.8 (CH3Si(CH2CH2CH2Si)2), 13.7 (-(CH3)2SiCH2CH2CH2NH), 19.8, 20.0, 20.1, 21.1 (SiCH2CH2CH2Si and -CH3Si(CH2CH2CH2Si)2), 25.3 (CH3)2SiCH2CH2CH2NH), 44.0 ((CH3)2SiCH2CH2CH2NH), 56.4 (-OCH3), 111.6 (CAr, ortho-OCH3), 116.5 (CAr, ortho-OH), 119.0 (CAr, PhCH=CH(CO)NH), 123.2, (CAr, para-OCH3), 128.3 (Cipso, para-OH), 142.0 (PhCH=CH(CO)NH), 149.2 (Cipso), 149.8 (Cipso), 169.0 (NHC=O). {1H-15N}-HMBC-NMR (CD3OD): δ (ppm) −259.6 (NHC=O). Elemental Analysis (%): Calc for C160H260N8O24Si13 (3044.98 g/mol). C, 63.11; H, 8.61; N, 3.68. Exp.: C, 64.56; H, 9.01; N, 3.96.

2.1.5. Synthesis of G2-[Si(CH2)3NH(CO)CH=CHCH2Ph(OH)2)]8 (5)

Dendrimer 5 was prepared through the same method as described for 1 by using the following reagents: caffeic acid (300.1 mg, 1.666 mmol), EDCI·HCl (318.7 mg, 1.666 mmol), HOBt (225.1 mg, 1.666 mmol), G2-[Si(CH2)3NH2]8 (207.0 mg, 0.174 mmol) and NEt3 (1.392 mmol). Compound 5 was obtained as a brown solid (218.6 mg, 65%). 1H-NMR (CD3OD): δ (ppm) −0.04 (s, 12H, CH3(CH2CH2CH2Si)2), 0.00 (s, 48H, -(CH3)2SiCH2CH2CH2NH), 0.47–0.69 (m, overlapping of signals, 64H, -SiCH2CH2CH2Si, CH3Si(CH2CH2CH2Si)2 and (CH3)2SiCH2CH2CH2NH), 1.34–1.46, (m, 24H, overlapping of signals, SiCH2CH2CH2Si and CH3Si(CH2CH2CH2Si)2), 1.49–1.62 (m, 16H, (CH3)2SiCH2CH2CH2NH), 3.27 (m, 16H, (CH3)2SiCH2CH2CH2NH), 6.40 (d, 8H, 3J(H-H) = 15.7 Hz, PhCH=CH(CO)NH), 6.77 (d, 8H, 3J(H-H) = 8.1 Hz, 1HAr, meta-CH=CH), 6.91 (d, 8H, 3J(H-H) = 8.1 Hz, 1HAr, ortho-CH=CH), 7.03 (s, 8H, 1HAr, ortho-CH=CH, ortho-OH), 7.41 (d, 8H, 3J(H-H) = 15.7 Hz, PhCH=CH(CO)NH). 13C-NMR (CD3OD): δ (ppm) −4.2 ((CH3)2SiCH2CH2CH2NH), −2.9 (CH3Si(CH2CH2CH2Si)2), 13.7 (-(CH3)2SiCH2CH2CH2NH), 19.8, 20.0, 20.1, 21.1 (SiCH2CH2CH2Si and -CH3Si(CH2CH2CH2Si)2), 25.2 (CH3)2SiCH2CH2CH2NH), 44.0 ((CH3)2SiCH2CH2CH2NH), 115.2 (CAr, ortho-OH, ortho-CH=CH), 116.5 (CAr, meta-CH=CH), 118.6 (PhCH=CH(CO)NH), 122.1, (CAr, ortho-CH=CH), 128.4 (Cipso, meta-OH, para-OH), 142.1 (PhCH=CH(CO)NH), 146.7 (Cipso), 148.7 (Cipso), 169.2 (NHC=O). {1H-15N}-HMBC-NMR (CD3OD): δ (ppm) −259.6 (NHC=O). Elemental Analysis (%): Calc for C152H244N8O24Si13 (2932.76 g/mol). C, 62.25; H, 8.39; N, 3.82. Exp.: C, 60.60; H, 8.49; N, 4.89.

2.1.6. Synthesis of G2-[Si(CH2)3NH(CO)Ph(OH)3]8 (6)

Dendrimer 6 wasprepared through the same method as described for 1 by using the following reagents: gallic acid (385.4 mg, 2.049 mmol), EDCI·HCl (391.9 mg, 2.049 mmol), HOBt (272.7 mg, 2.049 mmol), G2-[Si(CH2)3NH2]8 (352.0 mg, 0.213 mmol) and NEt3 (1.704 mmol). Compound 6 was obtained as a brown solid (455.7 mg, 75%). 1H-NMR (CD3OD): δ (ppm) −0.07 (s, 12H, CH3(CH2CH2CH2Si)2), −0.03 (s, 48H, -(CH3)2SiCH2CH2CH2NH), 0.45–0.68 (m, overlapping of signals, 64H, -SiCH2CH2CH2Si, CH3Si(CH2CH2CH2Si)2 and (CH3)2SiCH2CH2CH2NH), 1.31–1.44, (m, 24H, overlapping of signals, SiCH2CH2CH2Si and CH3Si(CH2CH2CH2Si)2), 1.51–1.65 (m, 16H, (CH3)2SiCH2CH2CH2NH), 3.27 (m, 16H, (CH3)2SiCH2CH2CH2NH), 6.85 (s, 16H), 7.03 (broad s, overlapping of signals, 32H, NH and Ph(OH)). 13C-NMR (CD3OD): δ (ppm). −4.3 ((CH3)2SiCH2CH2CH2NH), −2.9 (CH3Si(CH2CH2CH2Si)2), 13.7 ((CH3)2SiCH2CH2CH2NH), 19.8, 19.9, 20.1, 20.2 (SiCH2CH2CH2Si and -CH3Si(CH2CH2CH2Si)2), 25.3 ((CH3)2SiCH2CH2CH2NH), 44.3 ((CH3)2SiCH2CH2CH2NH), 107.8 (CAr, ortho-OH), 126.4 (Cipso, para-OH), 146.6 (Cipso, ortho-OH), 170.4 (NHC=O). {1H-15N}-HMBC-NMR (CD3OD): δ (ppm) −266.6 (NHC=O). Elemental Analysis (%): Calc for C136H228N8O32Si13 (2852.45 g/mol). C, 57.27; H, 8.06; N, 3.93. Exp.: C, 56.77; H, 8.98; N, 4.79.
The article will be updated and the original [1] will remain on the webpage.

Supplementary Materials

The following are available online at https://www.mdpi.com/1999-4923/13/1/121/s1, Figure S1. Mass Spectrometry (ESI-TOF) of dendritic polyphenol (1). Figure S2. 1H-NMR (500 MHz, CD3OD) of dendritic polyphenol (1). Figure S3. 13C-NMR (500 MHz, CD3OD) of dendritic polyphenol (1). Figure S4. {1H-15N}-HMBC-NMR (500 MHz, CD3OD) of dendritic polyphenol (1). Figure S5. 1H-DOSY-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (1). Figure S6. {1H-1H}-COSY-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (1). Figure S7. {1H-13C}-HSQC-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (1). Figure S8. {1H-13C}-HMBC-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (1). Figure S9. Mass Spectrometry (ESI-TOF) of dendritic polyphenol (2). Figure S10. 1H-NMR (500 MHz, CD3OD) of dendritic polyphenol (2). Figure S11. 13C-NMR (500 MHz, CD3OD) of dendritic polyphenol (2). Figure S12. {1H-15N}-HMBC-NMR (500 MHz, CD3OD) of dendritic polyphenol (2). Figure S13. 1H-DOSY-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (2). Figure S14. {1H-1H}-COSY-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (2). Figure S15. {1H-13C}-HSQC-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (2). Figure S16. Mass Spectrometry (ESI-TOF) of dendritic polyphenol (3). Figure S17. 1H-NMR (500 MHz, CD3OD) of dendritic polyphenol (3). Figure S18. 13C-NMR (500 MHz, CD3OD) of dendritic polyphenol (3). Figure S19. {1H-15N}-HMBC-NMR (500 MHz, CD3OD) of dendritic polyphenol (3). Figure S20. 1H-DOSY-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (3). Figure S21. {1H-1H}-COSY-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (3). Figure S22. {1H-13C}-HSQC-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (3). Figure S23. 1H-NMR (500 MHz, CD3OD) of dendritic polyphenol (4). Figure S24. 13C-NMR (500 MHz, CD3OD) of dendritic polyphenol (4). Figure S25. {1H-15N}-HMBC-NMR (500 MHz, CD3OD) of dendritic polyphenol (4). Figure S26. 1H-DOSY-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (4). Figure S27. {1H-1H}-COSY-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (4). Figure S28. {1H-13C}-HSQC-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (4). Figure S29. {1H-13C}-HMBC-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (4). Figure S30. 1H-NMR (500 MHz, CD3OD) of dendritic polyphenol (5). Figure S31. 13C-NMR (500 MHz, CD3OD) of dendritic polyphenol (5). Figure S32. {1H-15N}-HMBC-NMR (500 MHz, CD3OD) of dendritic polyphenol (5). Figure S33. 1H-DOSY-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (5). Figure S34. {1H-13C}-HSQC-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (5). Figure S35. {1H-13C}-HMBC-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (5). Figure S36. 1H-NMR (500 MHz, CD3OD) of dendritic polyphenol (6). Figure S37. 13C-NMR (500 MHz, CD3OD) of dendritic polyphenol (6). Figure S38. {1H-15N}-HMBC-NMR (500 MHz, CD3OD) of dendritic polyphenol (6). Figure S39. 1H-DOSY-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (6). Figure S40. {1H-1H}-COSY-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (6). Figure S41. {1H-13C}-HSQC-2D-NMR (500 MHz, CD3OD) of dendritic polyphenol (6). Figure S42. (A) A representative calibration curve of inhibition of DPPH by Trolox standards. Representative results of at least three independent experiments are shown. (B) Graphics with equations line for compound G1-[Si(CH2)3NH(CO)Ph(OH)3]4 (3).

Author Contributions

Methodology, P.O. and F.J.d.l.M.; investigation, N.S.d.O., C.E.P.G., and D.R.; resources, N.S.d.O. and C.E.P.G.; writing—original draft preparation, N.S.d.O., C.E.P.G. and D.R.; writing—review and editing, P.O. and F.J.d.l.M.; visualization, F.J.d.l.M. and A.E.; supervision, P.O., F.J.d.l.M. and A.E.; project administration, P.O.; funding acquisition, F.J.d.l.M., R.G. and A.E. All authors have read and agreed to the published version of the manuscript.

Funding

Authors thanks funding by grants from CTQ2017-86224-P (MINECO) and project SBPLY/17/180501/000358 Junta de Comunidades de Castilla-La Mancha (JCCM), consortiums IMMUNOTHERCAN-CM B2017/BMD-3733 and NANODENDMED II-CM ref. B2017/BMD-3703. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, the Consolider Program, and CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. This work has been supported partially by a EUROPARTNER: Strengthening and spreading international partnership activities of the Faculty of Biology and Environmental Protection for interdisciplinary research and innovation of the University of Lodz Programme: NAWA International Academic Partnership Programme. European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie (grant agreement 713714) and co-funding of the University of Teramo and Abruzzo region. Spanish Ministry of Economy, Industry and Competitiveness (CTQ2017-86441-C2-1-R) and TRANSNANOAVANSENS program (S2018/NMT-4349) from the Community of Madrid.

Data Availability Statement

The data presented in this study are available in Supplementary Materials.

Conflicts of Interest

The authors declare no conflict of interest.

Reference

  1. Sanz del Olmo, N.; Peña González, C.E.; Rojas, J.D.; Gómez, R.; Ortega, P.; Escarpa, A.; de la Mata, F.J. Antioxidant and Antibacterial Properties of Carbosilane Dendrimers Functionalized with Polyphenolic Moieties. Pharmaceutics 2020, 12, 698. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Sanz del Olmo, N.; Peña González, C.E.; Rojas, D.; Gómez, R.; Ortega, P.; Escarpa, A.; de la Mata, F.J. Erratum: Sanz del Olmo, N.; et al. Antioxidant and Antibacterial Properties of Carbosilane Dendrimers Functionalized with Polyphenolic Moieties. Pharmaceutics 2020, 12, 698. Pharmaceutics 2021, 13, 121. https://doi.org/10.3390/pharmaceutics13010121

AMA Style

Sanz del Olmo N, Peña González CE, Rojas D, Gómez R, Ortega P, Escarpa A, de la Mata FJ. Erratum: Sanz del Olmo, N.; et al. Antioxidant and Antibacterial Properties of Carbosilane Dendrimers Functionalized with Polyphenolic Moieties. Pharmaceutics 2020, 12, 698. Pharmaceutics. 2021; 13(1):121. https://doi.org/10.3390/pharmaceutics13010121

Chicago/Turabian Style

Sanz del Olmo, Natalia, Cornelia E. Peña González, Daniel Rojas, Rafael Gómez, Paula Ortega, Alberto Escarpa, and Francisco Javier de la Mata. 2021. "Erratum: Sanz del Olmo, N.; et al. Antioxidant and Antibacterial Properties of Carbosilane Dendrimers Functionalized with Polyphenolic Moieties. Pharmaceutics 2020, 12, 698" Pharmaceutics 13, no. 1: 121. https://doi.org/10.3390/pharmaceutics13010121

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop