Skip to main content

Advertisement

Log in

Allometric growth and carbon storage in the mangrove Sonneratia apetala

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Allometric growth reflects different allocation patterns and relationships of different components or traits of a plant and is closely related to ecosystem carbon storage. As an introduced species, the growth and carbon storage of Sonneratia apetala are still unclear. To derive allometric relationships of the mangrove S. apetala and to estimate carbon storage in mangrove ecosystems, we harvested 12 individual Sonneratia apetala trees from four different diameter classes in the Futian National Nature Reserve, Guangdong, China. Allometric growth models were fitted. The results showed that diameter at breast height (DBH) and wood density were better variables for predicting plant biomass (including above- and below-ground biomass) than plant height. There were significant power function relationships between biomass and DBH, with a mean allometric exponent of 2.22, and stem biomass accounted for 97% of the variation in S. apetala total biomass. Nearly isometric scaling relationships were developed between stem biomass and other biomass components. To better understand the carbon stocks of the S. apetala ecosystem, we categorized all trees into five age classes and quantified vegetation carbon storage. The S. apetala vegetation carbon storage ranged from 96.48 to 215.35 Mg C ha−1, and the carbon storage significantly increased with stand age. The allometric equations developed in this study are useful to estimate biomass and carbon storage of S. apetala ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study is available in the Appendix A.

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Google Scholar 

  • Alongi DM (2012) Carbon sequestration in mangrove forests. Carbon Manag 3:313–322

    CAS  Google Scholar 

  • Alongi DM (2014) Carbon cycling and storage in mangrove forests. Ann Rev Mar Sci 6:195–219

    PubMed  Google Scholar 

  • Basuki TM, van Laake PE, Skidmore AK, Hussin YA (2009) Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For Ecol Manage 257:1684–1694

    Google Scholar 

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11

    PubMed  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J-P, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    CAS  PubMed  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    PubMed  Google Scholar 

  • Chave J, Rejou-Mechain M, Burquez A, Chidumayo E, Colgan MS, Delitti WB, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martinez-yearizar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pelissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–3190

    Google Scholar 

  • Cheng D, Niklas K (2007) Above- and below-ground biomass relationships across 1543 forested communities. Ann Bot 99:95–102

    PubMed  Google Scholar 

  • Damuth J (2001) Scaling of growth: plants and animals are not so different. Proc Natl Acad Sci USA 98:2113–2114

    CAS  PubMed  Google Scholar 

  • Dean TJ, Long JN (1986) Validity of constant-stress and elastic-instability principles of stem formation in Pinus contorta and Trifolium pratense. Ann Bot 58:833–840

    Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297

    CAS  Google Scholar 

  • Enquist BJ, Bentley LP, Shenkin A, Maitner B, Savage V, Michaletz S, Blonder B, Buzzard V, Espinoza TEB, Farfan-Rios W, Doughty CE, Goldsmith GR, Martin RE, Salinas N, Silman M, Díaz S, Asner GP, Malhi Y (2017) Assessing trait-based scaling theory in tropical forests spanning a broad temperature gradient. Global Ecol Biogeogr 26:1357–1373

    Google Scholar 

  • Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature 395:163–165

    CAS  Google Scholar 

  • Enquist BJ, Kerkhoff AJ, Stark SC, Swenson NG, McCarthy MC, Price CA (2007) A general integrative model for scaling plant growth, carbon flux, and functional trait spectra. Nature 449:218–222

    CAS  PubMed  Google Scholar 

  • Enquist BJ, Niklas KJ (2002) Global allocation rules for patterns of biomass partitioning in seed plants. Science 295:1517–1520

    CAS  PubMed  Google Scholar 

  • Franco M, Kelly CK (1998) The interspecific mass–density relationship and plant geometry. Proc Natl Acad Sci USA 95:7830–7835

    CAS  PubMed  Google Scholar 

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159

    Google Scholar 

  • Hamilton SE, Casey D (2016) Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob Ecol Biogeogr 25:729–738

    Google Scholar 

  • Hamilton SE, Friess DA (2018) Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat Clim Change 8:240–244

    CAS  Google Scholar 

  • Hayward A, Kolasa J, Stone JR (2010) The scale-dependence of population density–body mass allometry: Statistical artefact or biological mechanism? Ecol Complex 7:115–124

    Google Scholar 

  • He Z, Peng Y, Guan D, Hu Z, Chen Y, Lee SY (2018) Appearance can be deceptive: shrubby native mangrove species contributes more to soil carbon sequestration than fast-growing exotic species. Plant Soil 432:425–436

    CAS  Google Scholar 

  • Hoque A, Sharma S, Hagihara A (2011) Above and belowground carbon acquisition of mangrove Kandelia obovata trees in Manko Wetland, Okinawa, Japan. Int J Environ 1:7–13

    Google Scholar 

  • Hui D, Wang J, Shen W, Le X, Ganter P, Ren H (2014) Near isometric biomass partitioning in forest ecosystems of China. PLoS ONE 9:e86550

    PubMed  PubMed Central  Google Scholar 

  • Huxley JS (1932) Problems of relative growth. Methuen and Co Ltd, London

    Google Scholar 

  • Jayatissa LP, Dahdouh-Guebas F, Koedam N (2002) A review of the floral composition and distribution of mangroves in Sri Lanka. Bot J Linn Soc 138:29–43

    Google Scholar 

  • Kauffman JB, Bhomia RK (2017) Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: global and regional comparisons. PLoS ONE 12:e0187749

    PubMed  PubMed Central  Google Scholar 

  • Kauffman JB, Heider C, Cole TG, Dwire KA, Donato DC (2011) Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands 31:343–352

    Google Scholar 

  • Khan MNI, Suwa R, Hagihara A (2009) Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S, L) Yong at Manko Wetland, Okinawa, Japan. Wetl Ecol Manag 17:585–599

    Google Scholar 

  • Komiyama A, Ong JE, Poungparn S (2008) Allometry, biomass, and productivity of mangrove forests: a review. Aquat Bot 89:128–137

    Google Scholar 

  • Komiyama A, Poungparn S, Kato S (2005) Common allometric equations for estimating the tree weight of mangroves. J Trop Ecol 21:471–477

    Google Scholar 

  • Lambers H, Poorter H (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research. Academic Press, New York, pp 187–261

    Google Scholar 

  • Li S-B, Chen P-H, Huang J-S, Hsueh M-L, Hsieh L-Y, Lee C-L, Lin H-J (2018) Factors regulating carbon sinks in mangrove ecosystems. Glob Change Biol 24:4195–4210

    Google Scholar 

  • Li Z, Zan Q, Yang Q, Zhu D, Chen Y, Yu S (2019) Remote estimation of mangrove aboveground carbon stock at the species level using a low-cost unmanned aerial vehicle system. Remote Sens 11:1018

    Google Scholar 

  • Liu H, Ren H, Hui D, Wang W, Liao B, Cao Q (2014) Carbon stocks and potential carbon storage in the mangrove forests of China. J Environ Manag 133:86–93

    Google Scholar 

  • Liu X, Trogisch S, He J, Niklaus PA, Bruelheide H, Tang Z, Erfmeier A, Scherer-Lorenzen M, Pietsch KA, Yang B, Kühn P, Scholten T, Huang Y, Wang C, Staab M, Leppert KN, Wirth C, Schmid B, Ma K (2018) Tree species richness increases ecosystem carbon storage in subtropical forests. Proc R Soc B 285:20181240

    PubMed  Google Scholar 

  • Lunstrum A, Chen L (2014) Soil carbon stocks and accumulation in young mangrove forests. Soil Biol Biochem 75:223–232

    CAS  Google Scholar 

  • McLeod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560

    Google Scholar 

  • McMahon T (1973) Size and shape in biology: elastic criteria impose limits on biological proportions, and consequently on metabolic rates. Science 179:1201–1204

    CAS  PubMed  Google Scholar 

  • Migeot J, Imbert D (2012) Phenology and production of litter in a Pterocarpus officinalis (Jacq) swamp forest of Guadeloupe (Lesser Antilles). Aquat Bot 101:18–27

    Google Scholar 

  • Mitra A, Sengupta K, Banerjee K (2012) Spatial and temporal trends in biomass and carbon sequestration potential of Sonneratia apetala Buch.-Ham in Indian Sundarbans. Proc Natl Acad Sci India Sect B 82:317–323

    Google Scholar 

  • Murdiyarso D, Purbopuspito J, Kauffman JB, Warren MW, Sasmito SD, Donato DC, Manuri S, Krisnawati H, Taberima S, Kurnianto S (2015) The potential of Indonesian mangrove forests for global climate change mitigation. Nat Clim Change 5:1089–1092

    CAS  Google Scholar 

  • Niklas KJ (2004) Plant allometry: is there a grand unifying theory? Biol Rev 79:871–889

    PubMed  Google Scholar 

  • Niklas KJ, Enquist BJ (2002a) Canonical rules for plant organ biomass partitioning and annual allocation. Am J Bot 89:812–819

    PubMed  Google Scholar 

  • Niklas KJ, Enquist BJ (2002b) On the vegetative biomass partitioning of seed plant leaves, stems, and roots. Am Nat 159:482–497

    PubMed  Google Scholar 

  • Norberg RA (1988) Theory of growth geometry of plants and self-thinning of plant populations: geometric similarity, elastic similarity, and different growth modes of plant parts. Am Nat 131:220–256

    Google Scholar 

  • Ouyang X, Lee SY (2020) Improved estimates on global carbon stock and carbon pools in tidal wetlands. Nat Commun 11:317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul KI, Roxburgh SH, Chave J, England JR, Zerihun A, Specht A, Lewis T, Bennett LT, Baker TG, Adams MA, Huxtable D, Montagu KD, Falster DS, Feller M, Sochacki S, Ritson P, Bastin G, Bartle J, Wildy D, Hobbs T, Larmour J, Waterworth R, Stewart HT, Jonson J, Forrester DI, Applegate G, Mendham D, Bradford M, O’Grady A, Green D, Sudmeyer R, Rance SJ, Turner J, Barton C, Wenk EH, Grove T, Attiwill PM, Pinkard E, Butler D, Brooksbank K, Spencer B, Snowdon P, O’Brien N, Battaglia M, Cameron DM, Hamilton S, McAuthur G, Sinclair J (2016) Testing the generality of above-ground biomass allometry across plant functional types at the continent scale. Glob Chang Biol 22:2106–2124

    PubMed  Google Scholar 

  • Peng C, Qian J, Guo X, Zhao H, Hu N, Yang Q, Chen C, Chen L (2016a) Vegetation carbon stocks and net primary productivity of the mangrove forests in Shenzhen, China. Chin J Appl Ecol 27:2059–2065

    CAS  Google Scholar 

  • Peng Y, Diao J, Zheng M, Guan D, Zhang R, Chen G, Lee SY (2016b) Early growth adaptability of four mangrove species under the canopy of an introduced mangrove plantation: Implications for restoration. For Ecol Manag 73:179–188

    Google Scholar 

  • Pham TD, Yoshino K, Bui DT (2016) Biomass estimation of Sonneratia caseolaris (l) Engler at a coastal area of Hai Phong city (Vietnam) using ALOS-2 PALSAR imagery and GIS-based multi-layer perceptron neural networks. Gisci Remote Sens 54:329–353

    Google Scholar 

  • Pregitzer KS, Euskirchen ES (2004) Carbon cycling and storage in world forests: biome patterns related to forest age. Glob Change Biol 10:2052–2077

    Google Scholar 

  • Ren H, Chen H, Li Z, Han W (2010) Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in Southern China. Plant Soil 327:279–291

    CAS  Google Scholar 

  • Ren H, Lu H, Shen W, Huang C, Guo Q, Li Z, Jian S (2009) Sonneratia apetala BuchHam in the mangrove ecosystems of China: an invasive species or restoration species? Ecol Eng 35:1243–1248

    Google Scholar 

  • Ren H, Wu X, Ning T, Huang G, Wang J, Jian S, Lu H (2011) Wetland changes and mangrove restoration planning in Shenzhen Bay, Southern China. Landsc Ecol Eng 7:241–250

    Google Scholar 

  • Rivera-Monroy VH, Lee SY, Kristensen E, Twilley RR (2017) Mangrove ecosystems: a global biogeographic perspective: structure, function, and services. Springer, Berlin

    Google Scholar 

  • Schile LM, Kauffman JB, Crooks S, Fourqurean JW, Glavan J, Megonigal JP (2017) Limits on carbon sequestration in arid blue carbon ecosystems. Ecol Appl 27:859–874

    PubMed  Google Scholar 

  • Simard M, Fatoyinbo L, Smetanka C, Rivera-Monroy VH, Castañeda-Moya F, Tomas N, Stocken TV (2019) Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat Geosci 12:40–45

    CAS  Google Scholar 

  • Swenson NJ, Enquist BJ (2007) Ecological and evolutionary determinants of a key plant functional trait: Wood density and its community-wide variation across latitude and elevation. Am J Bot 94:451–459

    PubMed  Google Scholar 

  • Tam NFY, Wong YS, Lan CY, Chen GZ (1995) Community structure and standing crop biomass of a mangrove forest in Futian Nature Reserve, Shenzhen, China. Hydrobiologia 295:193–201

    Google Scholar 

  • UNFCCC (2008) In: Report of the conference of the parties on its thirteenth session. Bali, Indonesia, 3–15 December, 2007 (Decision 1/CP.13)

  • Vo QT, Kuenzer C, Vo QM, Moder F, Oppelt N (2012) Review of valuation methods for mangrove ecosystem services. Ecol Indic 23:431–446

    Google Scholar 

  • Warton DI, Duursma RA, Falster DS, Taskinen S (2012) Smatr 3-an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259

    Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    CAS  PubMed  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) A general model for the structureand allometry of plant vascular systems. Nature 400:664–667

    CAS  Google Scholar 

  • Wilson JB (1988) A review of evidence on the control of shoot: root ratio, in relation to models. Ann Bot 61:433–449

    Google Scholar 

  • Wu M, He Z, Fung S, Cao Y, Guan D, Peng Y, Lee SY (2020) Species choice in mangrove reforestation may influence the quantity and quality of long-term carbon sequestration and storage. Sci Total Environ 714:136742

    CAS  PubMed  Google Scholar 

  • Yang Q, Lei A, Li F, Liu L, Zan Q, Shin PKS, Cheung SG, Tam NFY (2014) Structure and function of soil microbial community in artificially planted Sonneratia apetala and S. caseolaris forests at different stand ages in Shenzhen Bay. China Mar Pollut Bull 85:754–763

    CAS  PubMed  Google Scholar 

  • Zan Q, Wang B, Wang Y, Li M (2003) Ecological assessment on the introduced Sonneratia caseolaris and Sapetala at the mangrove forest of Shenzhen Bay, China. Acta Bot Sin 45:544–551

    Google Scholar 

  • Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Data from: towards a worldwide wood economics spectrum. Dryad, Dataset. https://doi.org/10.5061/dryad.234

    Article  Google Scholar 

Download references

Acknowledgements

We thank Stuart Hamilton for his constructive revision that greatly improved the paper, and the Shenzhen Mangrove Wetlands Conservation Foundation (MCF) for help in the field works.

Funding

This study was financially supported by the National Natural Science Foundation of China (Grant 31770513), Shenzhen Science and Technology Innovation Committee (Project no. JCYJ20180504170040910), Urban Administration and Law Enforcement Bureau of Shenzhen Municipality (201802), and the Zhang-Hongda Science Foundation at Sun Yat-sen University.

Author information

Authors and Affiliations

Authors

Contributions

DZ, SY designed the experiment; DZ, MW, QY, ZL, ZH, HY performed the field experiments; DZ analyzed data; DZ, SY, DH wrote and edited the manuscript.

Corresponding author

Correspondence to Shixiao Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 214 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Hui, D., Wang, M. et al. Allometric growth and carbon storage in the mangrove Sonneratia apetala. Wetlands Ecol Manage 29, 129–141 (2021). https://doi.org/10.1007/s11273-020-09772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-020-09772-7

Keywords

Navigation