Skip to main content
Log in

Detecting nonlinearity in the light curves of active galactic nuclei

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper discusses a statistical method of detecting nonlinearity in the light curves of active galactic nuclei (AGN). We model the light curves of AGN by two-variate stochastic differential equation (SDE) in which one variable is observable but not the other. Applying a nonparametric model of the SDE as well as its parametric models of linear and quadratic functions to the light curves provided by the Kepler satellite, we estimate the three models and thereby compare their prediction accuracy to detect nonlinearity. The results suggest that there exist quadratic or other nonlinearities in the light curves, while the others exhibit linearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O. Adegoke, S. Rakshit, B. Mukhopadhyay, Spectral and time series analyses of the Seyfert 1 AGN: Zw 229.015. Mon. Not. R. Astron. Soc. 466, 3951–3960 (2017)

    Article  ADS  Google Scholar 

  2. B.D.O. Anderson, J.B. Moor, Optim. Filter. (Prentice-Hall, New Jersey, 1979)

    Google Scholar 

  3. O. Bleas, General overview of black hole accretion theory. Space Sci. Rev. 183, 21–41 (2014)

    Article  ADS  Google Scholar 

  4. N. Caplar, S.J. Lilly, B. Trakhtenbrot, Optical variability of AGNs in the PTF/iPTF survey. Astrophys. J. 834, 111 (2017)

    Article  ADS  Google Scholar 

  5. R. Edelson, S. Vaughan, M. Malkan, B.C. Kelly, K.L. Smith, P.T. Boyd, R. Mushotzky, Discovery of a \(\sim 5\) day characteristic timescale in the Kepler power spectrum of Zw 229–15. Astrophys. J. 795, 1 (2014)

    Article  Google Scholar 

  6. A.H. Jazwinski, Stochastic Processes and Filtering Theory (Academic Press, New York, 1970)

    MATH  Google Scholar 

  7. V.P. Kasliwal, M.S. Vogeley, G.T. Richards, Are the variability properties of the Kepler AGN light curves consistent with a damped random walk? Mon. Not. Roy. Astron. Soc. 451, 4328–4345 (2015)

    Article  ADS  Google Scholar 

  8. V.P. Kasliwal, M.S. Vogeley, G.T. Richards, Extracting information from AGN variability. Mon. Not. R. Astron. Soc. 470, 3027–3048 (2017)

    Article  ADS  Google Scholar 

  9. B.C. Kelly, A.C. Becker, M. Sobolewska, A. Siemiginowska, P. Uttley, Flexible and scalable methods for quantifying stochastic variability in the era of massive time-domain astronomical data sets. Astrophys J 788, 1 (2014)

    Article  Google Scholar 

  10. A. Lawrence, Classification of active galaxies and the prospect of a unified phenomenology. Publ. Astron. Soc. Pac. 99, 309–334 (1987)

    Article  ADS  Google Scholar 

  11. R. Maiolino, G.H. Rieke, Low-luminosity and obscured Seyfert nuclei in nearby galaxies. Astrophys. J. 454, 95–105 (1995)

    Article  ADS  Google Scholar 

  12. R.F. Mushotzky, R. Edelson, W. Baumgartner, P. Gandhi, Kepler observations of rapid optical variability in active galactic nuclei. Astrophys. J. Lett. 743, L12 (2011)

    Article  ADS  Google Scholar 

  13. H. Netzer, Revisiting the unified model of active galactic nuclei. Annu. Rev. Astron. Astrophys. 53, 365–408 (2015)

    Article  ADS  Google Scholar 

  14. T. Ozaki, Time Series Modeling of Neuroscience Data (CRC Press, Boca Raton, 2012)

    Book  Google Scholar 

  15. M. Revalski, D. Nowak, P.J. Wiita, A.E. Wehrle, S.C. Unwin, Investigating the variability of active galactic nuclei using combined multi-quarter Kepler data. Astrophys. J. 785, 60 (2014)

    Article  ADS  Google Scholar 

  16. C.K. Seyfert, Nuclear emission in spiral nebulae. Astrophys. J. 97, 28–40 (1943)

    Article  ADS  Google Scholar 

  17. I. Shoji, A comparative study of maximum likelihood estimators for nonlinear dynamical system models. Int. J. Control 71, 391–404 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  18. I. Shoji, A nonparametric method of estimating nonlinear dynamical system models. Phys. Lett. A 277, 159–168 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. I. Shoji, Nonparametric filtering for stochastic nonlinear oscillations. Phys. Rev. E 102, 052221–12 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. I. Shoji, T. Ozaki, A statistical method of estimation and simulation for systems of stochastic differential equations. Biometrika 85, 240–243 (1998)

    Article  MathSciNet  Google Scholar 

  21. I. Shoji, T. Takata, Y. Mizumoto, A geometric method of analysis for the light curves of active galactic nuclei. Mon. Not. R. Astron. Soc. 495, 338–349 (2020)

    ADS  Google Scholar 

  22. T. Simm, M. Salvato, R. Saglia, G. Ponti, G. Lanzuisi, B. Trakhtenbrot, K. Nandra, R. Bender, Pan-STARRS1 variability of XMM-COSMOS AGN II. Physical correlations and power spectrum analysis. Astron. Astrophys. 585, A129 (2016)

    Article  ADS  Google Scholar 

  23. C.M. Urry, P. Padovani, Unified schemes for radio-loud active galactic nuclei. Publ. Astron. Soc. Pac. 107, 803–845 (1995)

    Article  ADS  Google Scholar 

  24. A.E. Wehrle, P.J. Wiita, S. C. et al., Kepler photometry of four radio-loud active galactic nuclei in 2010–2012. Astrophys. J. 773, 89 (2013)

Download references

Acknowledgements

We thank anonymous referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Shoji.

Appendix

Appendix

This appendix presents an outline of derivation for NPF. More detail discussion can be seen in Shoji [18, 19].

First suppose the truncated Taylor’s expansion of f around \({{\varvec{x}}}_0=(x_0,y_0)\) up to second order for simplicity although higher order expansion is possible. Then, we get

$$\begin{aligned} f({{\varvec{x}}})\approx & {} {\tilde{f}}({{\varvec{x}}}),\\= & {} f({{\varvec{x}}}_0)+{\partial f\over \partial x}({{\varvec{x}}}_0)(x-x_0)+{\partial f\over \partial y} ({{\varvec{x}}}_0)(y-y_0),\\&+{1\over 2}{\partial ^2 f\over \partial x^2}({{\varvec{x}}}_0)(x-x_0)^2+{\partial ^2 f\over \partial x\partial y}({{\varvec{x}}}_0)(x-x_0)(y-y_0), \\&+{1\over 2}{\partial ^2 f\over \partial y^2}f({{\varvec{x}}}_0)(y-y_0)^2. \end{aligned}$$

Let \(X_t=(X_{1,t},X_{2,t}){^T}\) and define \(Y_t={\tilde{f}}(X_t)\) by putting \(X_s\) into \({{\varvec{x}}}_0\) where \(s\le t\). Because \({\tilde{f}}\) is at most quadratic, repeated application of the Ito’s formula gives

$$\begin{aligned} Y_t^{(0,0)}- Y_s^{(0,0)}= & {} \int _s^t Y_u^{(1,0)}\mathrm{d}X_{1,u}+\int _s^t Y_u^{(0,1)}\mathrm{d}X_{2,u}, \\&+{\sigma ^2\over 2}\int _s^t Y_u^{(0,2)}\mathrm{d}u,\\ Y_t^{(1,0)}- Y_s^{(1,0)}= & {} \int _s^t Y_u^{(2,0)}\mathrm{d}X_{1,u}+\int _s^t Y_u^{(1,1)}\mathrm{d}X_{2,u},\\ Y_t^{(0,1)}- Y_s^{(0,1)}= & {} \int _s^t Y_u^{(1,1)}\mathrm{d}X_{1,u}+\int _s^t Y_u^{(0,2)}\mathrm{d}X_{2,u},\\ Y_t^{(2,0)}- Y_s^{(2,0)}= & {} 0,\\ Y_t^{(1,1)}- Y_s^{(1,1)}= & {} 0,\\ Y_t^{(0,2)}- Y_s^{(0,2)}= & {} 0. \end{aligned}$$

where

$$\begin{aligned} Y_t^{(i,j)}={\partial ^{i+j}{\tilde{f}}\over \partial ^i x\partial ^j y}(X_t). \end{aligned}$$

To discretize the process at discrete times \(\{t_k\}_{1\le k\le n}\), we assume that each integrand is a constant over the time interval \([t_k,t_{k+1})\). However, because we assume no function form of f, we must estimate \(Y_t^{(i,j)}\) from discrete observation \(\{Z_{t_k}\}_{1\le k\le n}\). To this end, we replace \(Y_{t_k}^{(i,j)}\) with its filter value, or \( Y_{t_k|t_k}^{(i,j)}=E[Y_{t_k}^{(i,j)}|\{Z_{t_j}\}_{1\le j\le k}]\). This replacement is also used for the formulation of the extended Kalman filter algorithm; see Anderson and Moor [2] and Jazwinski [6]. Furthermore, the last 3 equations imply that \(Y_{t_k}^{(i,j)}(i+j=2)\) are constant. Denoting them by \(\theta _j\) \((0\le j\le 2)\), we estimate \(\theta _j\) as nuisance parameters from the data. Under the above setting, the following equations in discrete time are obtained:

$$\begin{aligned} Y_{t_{k+1}}^{(0,0)}- Y_{t_k}^{(0,0)}= & {} Y_{t_k|t_k}^{(1,0)}(X_{1,t_{k+1}}- X_{1,t_k}) + Y_{t_k|t_k}^{(0,1)} (X_{2,t_{k+1}}- X_{2,t_k}),\\&+{\sigma ^2\over 2}\theta _2 (t_{k+1}-t_k),\\ Y_{t_{k+1}}^{(1,0)}- Y_{t_k}^{(1,0)}= & {} \theta _0(X_{1,t_{k+1}}- X_{1,t_k}) + \theta _1 (X_{2,t_{k+1}}- X_{2,t_k}), \\ Y_{t_{k+1}}^{(0,1)}- Y_{t_k}^{(0,1)}= & {} \theta _{1}(X_{1,t_{k+1}}- X_{1,t_k}) +\theta _2(X_{2,t_{k+1}}- X_{2,t_k}). \end{aligned}$$

By substituting \(f(X_{t})\) for \({\tilde{f}}(X_{t})=Y_{t}^{(0,0)}\) together with,

$$\begin{aligned} Y_{t}^{(0,0)}- Y_{t_k}^{(0,0)}= Y_{t_k|t_k}^{(1,0)}(X_{1,t}-X_{1,t_k})+ Y_{t_k|t_k}^{(0,1)}(X_{2,t}-X_{2,t_k}) +{\sigma ^2\over 2} \theta _2(t-t_k), \end{aligned}$$

we get a linear approximate SDE of (1)–(2). Since a linear SDE has an exact form of the solution, the approximate discretization at \(t=t_{k+1}\) is given by

$$\begin{aligned} X_{t_{k+1}}= & {} X_{t_k} +J_{t_k}^{-1}\left\{ \exp (J_{t_k}\Delta t)-I\right\} \Phi _{t_k}\\&+ (J_{t_k}^{-1})^2\left\{ \exp (J_{t_k}\Delta t)-I-J_{t_k}\Delta t\right\} M_{t_k}\\&+\int _{t_k}^{t_{k+1}}\exp \{J_{t_k}(t_{k+1}-u)\}S dB_u. \end{aligned}$$

where

$$\begin{aligned} \Phi _{t_k}= & {} (X_{2,t_k},Y^{(0,0)}_{t_k})^T,\\ J_t= & {} \left( \begin{array}{cc} 0&{} 1\\ Y^{(1,0)}_{t|t}&{} Y^{(0,1)}_{t|t} \end{array} \right) ,\\ M_t= & {} (0,{\sigma ^2\over 2}\theta _2)^T. \end{aligned}$$

See [14] and Shoji and Ozaki [17] for details. Using this and the equations of \(Y^{(i,j)}_{t_{k+1}}-Y^{(i,j)}_{t_{k}}\) above, we obtain the formula for NPF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoji, I., Takata, T. & Mizumoto, Y. Detecting nonlinearity in the light curves of active galactic nuclei. Eur. Phys. J. Plus 136, 105 (2021). https://doi.org/10.1140/epjp/s13360-021-01105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01105-8

Navigation