Skip to main content

Advertisement

Log in

Stochastic analysis of asymmetric monostable harvesters driven by Gaussian white noise with moment differential equations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

As an effective means to overcome the shortcomings of linear systems only performing well near the resonance frequency, monostable piezoelectric energy harvesters (MPEHs) have been investigated widely in the area of energy harvesting. However, it is difficult to achieve a perfectly symmetric potential energy function due to the asymmetries in magnets and materials. Therefore, the response characteristics of the asymmetric MPEHs with quartic potential function under Gaussian white noise excitation are explored in this paper. The method of moment differential equation is applied to approximately determine the output performance of the asymmetric potential MPEHs under the excitation of Gaussian white noise. For the symmetric MPEH, the influence of external excitation intensity and internal system parameters on the outputs is firstly analyzed theoretically and numerically. When a quadratic nonlinear coefficient is introduced and only using its variation to characterize the variation of the asymmetry, the output performance of the MPEH is enhanced and the power increases with an increase in the asymmetry. Particularly, the existence of asymmetry leads the system to have a nonzero mean value for the displacement response, which then influences the shape of the probability density function. In the condition that more coefficients are employed to represent the asymmetry, the influence of asymmetry on the output depends on the potential energy function’s shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F. Invernizzi, S. Dulio, M. Patrini, G. Guizzetti, P. Mustarelli, Chem. Soc. Rev. 45, 5455 (2016)

    Article  Google Scholar 

  2. J. Twiefel, H. Westermann, J. Intell. Mater. Syst. Struct. 24, 1291 (2013)

    Article  Google Scholar 

  3. C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Energy Environ. Sci. 7, 25 (2014)

    Article  Google Scholar 

  4. J. Wang, L. Tang, L. Zhao, Z. Zhang, Energy 172, 1066 (2019)

    Article  Google Scholar 

  5. J. Wang, S. Zhou, Z. Zhang, D. Yurchenko, Energ. Convers. Manag. 181, 645 (2019)

    Article  Google Scholar 

  6. M.F. Daqaq, R. Masana, A. Erturk, D.D. Quinn, Appl. Mech. Rev. 66, 040801 (2014)

    Article  ADS  Google Scholar 

  7. R.L. Harne, K.W. Wang, Smart Mater. Struct. 22, 023001 (2013)

    Article  ADS  Google Scholar 

  8. L. Tang, Y. Yang, C.K. Soh, J. Intell. Mater. Syst. Struct. 21, 1867 (2010)

    Article  Google Scholar 

  9. W. Wang, J. Cao, N. Zhang, J. Lin, W.-H. Liao, Energy Convers. Manag. 132, 189 (2017)

    Article  Google Scholar 

  10. B.P. Mann, N.D. Sims, J. Sound Vib. 319, 515 (2009)

    Article  ADS  Google Scholar 

  11. S.C. Stanton, C.C. McGehee, B.P. Mann, Appl. Phys. Lett. 95, 174103 (2009)

    Article  ADS  Google Scholar 

  12. D. Hoffmann, A. Willmann, T. Hehn, B. Folkmer, Y. Manoli, Smart Mater. Struct. 25, 035013 (2016)

    Article  ADS  Google Scholar 

  13. K. Fan, Q. Tan, Y. Zhang, S. Liu, M. Cai, Y. Zhu, Appl. Phys. Lett. 112, 123901 (2018)

    Article  ADS  Google Scholar 

  14. S.P. Pellegrini, N. Tolou, M. Schenk, J.L. Herder, J. Intell. Mater. Syst. Struct. 24, 1303 (2012)

    Article  Google Scholar 

  15. F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009)

    Article  ADS  Google Scholar 

  16. A. Erturk, D.J. Inman, J. Sound Vib. 330, 2339 (2011)

    Article  ADS  Google Scholar 

  17. A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94, 254102 (2009)

    Article  ADS  Google Scholar 

  18. A.F. Arrieta, P. Hagedorn, A. Erturk, D.J. Inman, Appl. Phys. Lett. 97, 104102 (2010)

    Article  ADS  Google Scholar 

  19. A.F. Arrieta, T. Delpero, A.E. Bergamini, P. Ermanni, Appl. Phys. Lett. 102, 173904 (2013)

    Article  ADS  Google Scholar 

  20. R. Masana, M.F. Daqaq, J. Appl. Phys. 111, 044501 (2012)

    Article  ADS  Google Scholar 

  21. S. Zhou, J. Cao, J. Lin, Z. Wang, Eur. Phys. J. Appl. Phys. 67, 30902 (2014)

    Article  ADS  Google Scholar 

  22. S. Zhou, J. Cao, D.J. Inman, S. Liu, W. Wang, J. Lin, Appl. Phys. Lett. 106, 093901 (2015)

    Article  ADS  Google Scholar 

  23. J.Y. Cao, S.X. Zhou, W. Wang, J. Lin, Appl. Phys. Lett. 106, 173903 (2015)

    Article  ADS  Google Scholar 

  24. P. Kim, J. Seok, J. Sound Vib. 333, 5525 (2014)

    Article  ADS  Google Scholar 

  25. P. Kim, D. Son, J. Seok, Appl. Phys. Lett. 108, 243902 (2016)

    Article  ADS  Google Scholar 

  26. Z. Zhou, W. Qin, P. Zhu, Sens. Actuator A Phys. 243, 151 (2016)

    Article  Google Scholar 

  27. C. Wang, Q. Zhang, W. Wang, AIP Adv. 7, 045314 (2017)

    Article  ADS  Google Scholar 

  28. G. Litak, M.I. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010)

    Article  ADS  Google Scholar 

  29. S. Zhao, A. Erturk, Appl. Phys. Lett. 102, 103902 (2013)

    Article  ADS  Google Scholar 

  30. J.I. Deza, R.R. Deza, H.S. Wio, EPL-Europhys. Lett. 100, 38001 (2012)

    Article  ADS  Google Scholar 

  31. J.I.P. Rosselló, H.S. Wio, R.R. Deza, P. Hänggi, Eur. Phys. J. B 90, 34 (2017)

    Article  ADS  Google Scholar 

  32. S. Ali, S. Adhikari, M. Friswell, S. Narayanan, J. Appl. Phys. 109, 074904 (2011)

    Article  ADS  Google Scholar 

  33. W.-A. Jiang, L.-Q. Chen, Commun. Nonlinear Sci. 19, 2897 (2014)

    Article  Google Scholar 

  34. W.-A. Jiang, L.-Q. Chen, J. Sound Vib. 333, 4314 (2014)

    Article  ADS  Google Scholar 

  35. M. Xu, X. Jin, Y. Wang, Z. Huang, Nonlinear Dyn. 78, 1451 (2014)

    Article  Google Scholar 

  36. Y.G. Yang, W. Xu, Nonlinear Dyn. 94, 639 (2018)

    Article  Google Scholar 

  37. W.-A. Jiang, L.-Q. Chen, J. Sound Vib. 377, 264 (2016)

    Article  ADS  Google Scholar 

  38. M.F. Daqaq, J. Sound Vib. 329, 3621 (2010)

    Article  ADS  Google Scholar 

  39. M.F. Daqaq, J. Sound Vib. 330, 2554 (2011)

    Article  ADS  Google Scholar 

  40. K. Yang, F. Fei, J. Du, J. Phys. D Appl. Phys. 52, 055501 (2019)

    Article  ADS  Google Scholar 

  41. E. Halvorsen, Phys. Rev. E 87, 042129 (2013)

    Article  ADS  Google Scholar 

  42. Q.F. He, M.F. Daqaq, J. Sound Vib. 333, 3479 (2014)

    Article  ADS  Google Scholar 

  43. W. Wang, J. Cao, C.R. Bowen, Y. Zhang, J. Lin, Nonlinear Dyn. 94, 1183 (2018)

    Article  Google Scholar 

  44. W. Wang, J. Cao, C.R. Bowen, G. Litak, Eur. Phys. J. Plus 134, 558 (2019)

    Article  Google Scholar 

  45. S. Zhou, L. Zuo, Commun. Nonlinear Sci. 61, 271 (2018)

    Article  Google Scholar 

  46. Y. Li, S. Zhou, AIP Adv. 8, 125212 (2018)

    Article  ADS  Google Scholar 

  47. W. Zhu, G. Cai, Introduction to Stochastic Dynamics (Science Press, Beijing, 2017).

    Google Scholar 

  48. A. Naess, V. Moe, Probab. Eng. Mech. 15, 221 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Project funded by China Postdoctoral Science Foundation (2020M682336), Science and Technology Project of Henan Province (212102310248), National Natural Science Foundation of China (Grant No. 51575426, 51611530547, 51811530321); this research was partly supported by China Scholarship Council. GL was supported by the program of the Polish Ministry of Science and Higher Education under the Project DIALOG 0019/DLG/2019/10 in the years 2019-2021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Junyi Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Cao, J., Wei, ZH. et al. Stochastic analysis of asymmetric monostable harvesters driven by Gaussian white noise with moment differential equations. Eur. Phys. J. Plus 136, 104 (2021). https://doi.org/10.1140/epjp/s13360-021-01127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01127-2

Navigation