Skip to main content

Advertisement

Log in

A Critical Review of Waste Glass Powder as an Aluminosilicate Source Material for Sustainable Geopolymer Concrete Production

  • Review Article
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Incorporation of the waste glass powder (WGP) as an aluminosilicate precursor material in the geopolymer concrete preparation has been researched for the past twenty years as an alternative to the sustainable construction material because of its significant impact on the reduction of greenhouse gases. This paper reviews the various applications of the WGP in the geopolymer matrix production as binary and ternary source material and the impact of the inclusion of WGP on the fresh and hardened characteristics of geopolymer concrete. More research articles associated with the usage of WGP in geopolymer concrete were published in the last ten years. Collective information on the WGP as an aluminosilicate source material in binary, ternary and quaternary blended geopolymer concrete is not available. This review article sums up the newest findings and developments achieved in the synthesis of geopolymer concrete containing WGP as one of the aluminosilicate source material. The study concludes that WGP could be utilized as an innovative and promising eco-friendly aluminosilicate source material to manufacture geopolymer concrete, thereby providing an environmentally eco-friendly solution for the glass and Portland cement based industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Zheng K (2016) Pozzolanic reaction of glass powder and its role in controlling alkali-silica reaction. Cem Concr Compos 67:30–38. https://doi.org/10.1016/j.cemconcomp.2015.12.008

    Article  CAS  Google Scholar 

  2. Aliabdo AA, Abd Elmoaty AEM, Aboshama AY (2016) Utilization of waste glass powder in the production of cement and concrete. Constr Build Mater 124:866–877. https://doi.org/10.1016/j.conbuildmat.2016.08.016

    Article  CAS  Google Scholar 

  3. Gopalakrishnan R, Chinnaraju K (2019) Durability of ambient cured alumina silicate concrete based on slag/fly ash blends against sulfate environment. Constr Build Mater 204:70–83. https://doi.org/10.1016/j.conbuildmat.2019.01.153

    Article  CAS  Google Scholar 

  4. Torres-Carrasco M, Puertas F (2015) Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. J Clean Prod 90:397–408. https://doi.org/10.1016/j.jclepro.2014.11.074

    Article  CAS  Google Scholar 

  5. Ali MB, Saidur R, Hossain MS (2011) A review on emission analysis in cement industries. Renew Sustain Energy Rev 15:2252–2261. https://doi.org/10.1016/j.rser.2011.02.014

    Article  CAS  Google Scholar 

  6. Carreño-Gallardo C, Tejeda-Ochoa A, Perez-Ordonez OI et al (2018) In the CO2 emission remediation by means of alternative geopolymers as substitutes for cements. J Environ Chem Eng 6:4878–4884. https://doi.org/10.1016/j.jece.2018.07.033

    Article  CAS  Google Scholar 

  7. Al-Mansour A, Chow CL, Feo L et al (2019) Green concrete: By-products utilization and advanced approaches. Sustain 11:1–30. https://doi.org/10.3390/su11195145

    Article  CAS  Google Scholar 

  8. Puertas F, Torres-Carrasco M (2014) Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cem Concr Res 57:95–104. https://doi.org/10.1016/j.cemconres.2013.12.005

    Article  CAS  Google Scholar 

  9. Part WK, Ramli M, Cheah CB (2015) An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Constr Build Mater 77:370–395. https://doi.org/10.1016/j.conbuildmat.2014.12.065

    Article  Google Scholar 

  10. Yahya Z, Abdullah MMAB, Hussin K et al (2015) Effect of solids-to-liquids, Na2SiO3-to-NaOH and curing temperature on the palm oil boiler ash (Si + Ca) geopolymerisation system. Materials (Basel) 8:2227–2242. https://doi.org/10.3390/ma8052227

    Article  CAS  Google Scholar 

  11. Davidovits J (1991) Geopolymers - Inorganic polymeric new materials. J Therm Anal 37:1633–1656. https://doi.org/10.1007/BF01912193

    Article  CAS  Google Scholar 

  12. Amritphale SS, Mishra D, Mudgal M et al (2016) A novel green approach for making hybrid inorganic- organic geopolymeric cementitious material utilizing fly ash and rice husk. J Environ Chem Eng 4:3856–3865. https://doi.org/10.1016/j.jece.2016.08.015

    Article  CAS  Google Scholar 

  13. Yogeshwaran S et al (2015) Mechanical properties of leaf ashes reinforced aluminum alloy metal matrix composites. Int J Appl Eng Res 10.13:11048–11052

    Google Scholar 

  14. Annamalai S, Thirugnanasambandam S, Muthumani K (2017) Flexural behaviour of geopolymer concrete beams cured under ambient temperature. Asian J Civ Eng 18:621–631

    Google Scholar 

  15. Nagajothi S, Elavenil S (2020) Effect of GGBS addition on reactivity and microstructure properties of ambient cured fly ash based geopolymer concrete. Silicon. https://doi.org/10.1007/s12633-020-00470-w

  16. Mustakim SM, Das SK, Mishra J et al (2020) Improvement in fresh, mechanical and microstructural properties of fly ash- blast furnace slag based geopolymer concrete by addition of nano and micro silica. Silicon. https://doi.org/10.1007/s12633-020-00593-0

  17. Ajay Kumar TM, Eshwar Prabhath K, V.N.L.S.A.P.Aishwarya VV (2018) Self compacting geopolymer concrete with an alkaline activator ratio. Int J Civ Eng Technol 09:1877–1882

    Google Scholar 

  18. Darsanasiri AGND, Matalkah F, Ramli S et al (2018) Ternary alkali aluminosilicate cement based on rice husk ash, slag and coal fly ash. J Build Eng 19:36–41. https://doi.org/10.1016/j.jobe.2018.04.020

    Article  Google Scholar 

  19. Pelisser F, Guerrino EL, Menger M et al (2013) Micromechanical characterization of metakaolin-based geopolymers. Constr Build Mater 49:547–553. https://doi.org/10.1016/j.conbuildmat.2013.08.081

    Article  Google Scholar 

  20. Haddaji Y, Majdoubi H, Mansouri S et al (2020) Effect of sodium hexafluorosilicate addition on the properties of metakaolin based geopolymers cured at ambient temperature. Silicon. https://doi.org/10.1007/s12633-020-00536-9

  21. Okoye FN, Durgaprasad J, Singh NB (2016) Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceram Int 42:3000–3006. https://doi.org/10.1016/j.ceramint.2015.10.084

    Article  CAS  Google Scholar 

  22. Jithendra C, Elavenil S (2020) Effects of silica fume on workability and compressive strength properties of aluminosilicate based flowable geopolymer mortar under ambient curing. Silicon 12:1965–1974. https://doi.org/10.1007/s12633-019-00308-0

    Article  CAS  Google Scholar 

  23. Jithendra C, Elavenil S (2020) Influences of parameters on slump flow and compressive strength properties of aluminosilicate based flowable geopolymer concrete using taguchi method. Silicon 12:595–602. https://doi.org/10.1007/s12633-019-00166-w

    Article  CAS  Google Scholar 

  24. Rodier L, Villar-Cociña E, Ballesteros JM, Junior HS (2019) Potential use of sugarcane bagasse and bamboo leaf ashes for elaboration of green cementitious materials. J Clean Prod 231:54–63. https://doi.org/10.1016/j.jclepro.2019.05.208

    Article  CAS  Google Scholar 

  25. Xiao R, Ma Y, Jiang X et al (2020) Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature. J Clean Prod 252:119610. https://doi.org/10.1016/j.jclepro.2019.119610

    Article  CAS  Google Scholar 

  26. Magesh M, Jawahar S, Dhanesh E, Vasugi V (2019) Influence of bottom ash as fine aggregate in ggbfs geopolymer concrete. Int J Innov Technol Explor Eng 8:919–924

    Google Scholar 

  27. He J, Jie Y, Zhang J et al (2013) Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem Concr Compos 37:108–118. https://doi.org/10.1016/j.cemconcomp.2012.11.010

    Article  CAS  Google Scholar 

  28. Bhutta MAR, Hussin WM, Azreen M, Tahir MM (2014) Sulphate resistance of geopolymer concrete prepared from blended waste fuel ash. J Mater Civ Eng 26. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001030

  29. Cheah CB, Samsudin MH, Ramli M et al (2017) The use of high calcium wood ash in the preparation of ground granulated blast furnace slag and pulverized fly ash geopolymers: A complete microstructural and mechanical characterization. J Clean Prod 156:114–123. https://doi.org/10.1016/j.jclepro.2017.04.026

    Article  CAS  Google Scholar 

  30. Bheel N, Adesina A (2020) Influence of binary blend of corn cob ash and glass powder as partial replacement of cement in concrete. Silicon. https://doi.org/10.1007/s12633-020-00557-4

  31. Letelier V, Henríquez-Jara BI, Manosalva M et al (2019) Use of waste glass as a replacement for raw materials in mortars with a lower environmental impact. Energies 12. https://doi.org/10.3390/en12101974

  32. Madupalli S et al (2019) Structural performance of non-linear analysis of turbo generator building using seismic protection techniquesInt. J Recent Technol Eng 8(1):1091–1095

    Google Scholar 

  33. Ma CK, Awang AZ, Omar W (2018) Structural and material performance of geopolymer concrete: A review. Constr Build Mater 186:90–102. https://doi.org/10.1016/j.conbuildmat.2018.07.111

    Article  CAS  Google Scholar 

  34. Chen G, Lee H, Young KL et al (2002) Glass recycling in cement production-an innovative approach. Waste Manag 22:747–753. https://doi.org/10.1016/S0956-053X(02)00047-8

    Article  CAS  PubMed  Google Scholar 

  35. Jiang Y, Ling TC, Mo KH, Shi C (2019) A critical review of waste glass powder – Multiple roles of utilization in cement-based materials and construction products. J Environ Manage 242:440–449. https://doi.org/10.1016/j.jenvman.2019.04.098

    Article  PubMed  Google Scholar 

  36. Shresta P (2016) Impact of recycling in a glass industry: a project management study. BIMS Int J Soc Sci Res 1:50–61

    Google Scholar 

  37. Saito M, Shukuya M (1996) Energy and material use in the production of insulating glass windows. Sol Energy 58:247–252. https://doi.org/10.1016/S0038-092X(96)00056-4

    Article  Google Scholar 

  38. Ruth M, Dell’Anno P (1997) An industrial ecology of the US glass industry. Resour Policy 23:109–124. https://doi.org/10.1016/s0301-4207(97)00020-2

    Article  Google Scholar 

  39. Ling TC, Poon CS, Wong HW (2013) Management and recycling of waste glass in concrete products: Current situations in Hong Kong. Resour Conserv Recycl 70:25–31. https://doi.org/10.1016/j.resconrec.2012.10.006

    Article  Google Scholar 

  40. Jani Y, Hogland W (2014) Waste glass in the production of cement and concrete - A review. J Environ Chem Eng 2:1767–1775. https://doi.org/10.1016/j.jece.2014.03.016

    Article  CAS  Google Scholar 

  41. Guo P, Meng W, Nassif H et al (2020) New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Constr Build Mater 257:119579. https://doi.org/10.1016/j.conbuildmat.2020.119579

    Article  Google Scholar 

  42. Liu Y, Shi C, Zhang Z, Li N (2019) An overview on the reuse of waste glasses in alkali-activated materials. Resour Conserv Recycl 144:297–309. https://doi.org/10.1016/j.resconrec.2019.02.007

    Article  Google Scholar 

  43. Sakthi Shunmuga P, Sundaram et al (2019) Smart clothes with bio-sensors for ECG MonitoringInt. J Innovat Technol Explor Eng 8(4):298–301

    Google Scholar 

  44. Mirzahosseini M, Riding KA (2015) Influence of different particle sizes on reactivity of finely ground glass as supplementary cementitious material (SCM). Cem Concr Compos 56:95–105. https://doi.org/10.1016/j.cemconcomp.2014.10.004

    Article  CAS  Google Scholar 

  45. Islam GMS, Rahman MH, Kazi N (2017) Waste glass powder as partial replacement of cement for sustainable concrete practice. Int J Sustain Built Environ 6:37–44. https://doi.org/10.1016/j.ijsbe.2016.10.005

    Article  Google Scholar 

  46. Heriyanto PF, Sahajwalla V (2018) From waste glass to building materials – An innovative sustainable solution for waste glass. J Clean Prod 191:192–206. https://doi.org/10.1016/j.jclepro.2018.04.214

    Article  Google Scholar 

  47. Zhang L, Yue Y (2018) Influence of waste glass powder usage on the properties of alkali-activated slag mortars based on response surface methodology. Constr Build Mater 181:527–534. https://doi.org/10.1016/j.conbuildmat.2018.06.040

    Article  CAS  Google Scholar 

  48. Lu J, Duan Z hua, Poon CS (2017) Fresh properties of cement pastes or mortars incorporating waste glass powder and cullet. Constr Build Mater 131:793–799. https://doi.org/10.1016/j.conbuildmat.2016.11.011

  49. Vafaei M, Allahverdi A (2017) High strength geopolymer binder based on waste-glass powder. Adv Powder Technol 28:215–222. https://doi.org/10.1016/j.apt.2016.09.034

    Article  CAS  Google Scholar 

  50. Zhang S, Keulen A, Arbi K, Ye G (2017) Waste glass as partial mineral precursor in alkali-activated slag/fly ash system. Cem Concr Res 102:29–40. https://doi.org/10.1016/j.cemconres.2017.08.012

    Article  CAS  Google Scholar 

  51. Rashad AM (2014) Recycled waste glass as fine aggregate replacement in cementitious materials based on Portland cement. Constr Build Mater 72:340–357. https://doi.org/10.1016/j.conbuildmat.2014.08.092

    Article  Google Scholar 

  52. Hama SM, Mahmoud AS, Yassen MM (2019) Flexural behavior of reinforced concrete beam incorporating waste glass powder. Structures 20:510–518. https://doi.org/10.1016/j.istruc.2019.05.012

    Article  Google Scholar 

  53. Alhumoud JM, Al-Mutairi NZ, Terro MJ (2008) Recycling crushed glass in concrete mixes. Int J Environ Waste Manag 2:111–124. https://doi.org/10.1504/IJEWM.2008.016996

    Article  CAS  Google Scholar 

  54. Zhang T, Gao P, Gao P et al (2013) Effectiveness of novel and traditional methods to incorporate industrial wastes in cementitious materials - An overview. Resour Conserv Recycl 74:134–143. https://doi.org/10.1016/j.resconrec.2013.03.003

    Article  Google Scholar 

  55. Tho-in T, Sata V, Boonserm K, Chindaprasirt P (2018) Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fl y ash. J Clean Prod 172:2892–2898. https://doi.org/10.1016/j.jclepro.2017.11.125

    Article  CAS  Google Scholar 

  56. Hemanth RD et al (2017) Evaluation of mechanical properties of e-glass and coconut fiber reinforced with polyester and epoxy resin matrices. Intern J of Mech Prod Eng Res Dev 7.5:13–20

    Google Scholar 

  57. Si R, Dai Q, Guo S, Wang J (2020) Mechanical property, nanopore structure and drying shrinkage of metakaolin-based geopolymer with waste glass powder. J Clean Prod 242:118502. https://doi.org/10.1016/j.jclepro.2019.118502

    Article  CAS  Google Scholar 

  58. Burciaga-Díaz O, Durón-Sifuentes M, Díaz-Guillén JA, Escalante-García JI (2020) Effect of waste glass incorporation on the properties of geopolymers formulated with low purity metakaolin. Cem Concr Compos 107. https://doi.org/10.1016/j.cemconcomp.2019.103492

  59. Pascual AB, Tognonvi MT (2014) Waste glass powder-based alkali-activated mortar. Int J Res Eng Technol 03:32–36. https://doi.org/10.15623/ijret.2014.0325006

    Article  Google Scholar 

  60. Shoaei P, Ameri F, Reza Musaeei H et al (2020) Glass powder as a partial precursor in Portland cement and alkali-activated slag mortar: A comprehensive comparative study. Constr Build Mater 251:118991. https://doi.org/10.1016/j.conbuildmat.2020.118991

    Article  CAS  Google Scholar 

  61. Topark-Ngarm P, Tho-In T, Sata V et al (2019) Influence of glass and limestone powders in high calcium fly ash geopolymer paste on compressive strength and microstructure. Key Eng Mater 801:397–403. https://doi.org/10.4028/www.scientific.net/KEM.801.397

    Article  Google Scholar 

  62. Maraghechi H, Salwocki S, Rajabipour F (2017) Utilisation of alkali activated glass powder in binary mixtures with Portland cement, slag, fly ash and hydrated lime. Mater Struct Constr 50:1–14. https://doi.org/10.1617/s11527-016-0922-5

    Article  CAS  Google Scholar 

  63. He P, Zhang B, Lu JX, Poon CS (2020) A ternary optimization of alkali-activated cement mortars incorporating glass powder, slag and calcium aluminate cement. Constr Build Mater 240:117983. https://doi.org/10.1016/j.conbuildmat.2019.117983

    Article  CAS  Google Scholar 

  64. Liu G, Florea MVA, Brouwers HJH (2019) Waste glass as binder in alkali activated slag–fly ash mortars. Mater Struct Constr 52:1–12. https://doi.org/10.1617/s11527-019-1404-3

    Article  CAS  Google Scholar 

  65. Sethi H, Bansal PP, Sharma R (2019) Effect of Addition of GGBS and Glass Powder on the Properties of Geopolymer Concrete. Iran J Sci Technol - Trans Civ Eng 43:607–617. https://doi.org/10.1007/s40996-018-0202-4

    Article  Google Scholar 

  66. Samarakoon MH, Ranjith PG, De Silva VRS (2020) Effect of soda-lime glass powder on alkali-activated binders: Rheology, strength and microstructure characterization. Constr Build Mater 241:118013. https://doi.org/10.1016/j.conbuildmat.2020.118013

    Article  CAS  Google Scholar 

  67. Samadi M, Shah KW, Lim NHAS, Huseien GF (2020) Influence of glass silica waste nano powder on the mechanical and microstructure properties of alkali-activated mortars. Nanomaterials 10. https://doi.org/10.3390/nano10020324

  68. Khan MNN, Kuri JC, Sarker PK (2020) Effect of waste glass powder as a partial precursor in ambient cured alkali activated fly ash and fly ash-GGBFS mortars. J Build Eng 101934. https://doi.org/10.1016/j.jobe.2020.101934

  69. Santhosh MS et al (2018) Investigation of mechanical and electrical properties of Kevlar/E-glass and Basalt/E-glass reinforced hybrid composites. Intern J of Mech Prod Eng Res Dev 8.3:591–598

    Google Scholar 

  70. Liu G, Florea MVA, Brouwers HJH (2019) Characterization and performance of high volume recycled waste glass and ground granulated blast furnace slag or fly ash blended mortars. J Clean Prod 235:461–472. https://doi.org/10.1016/j.jclepro.2019.06.334

    Article  CAS  Google Scholar 

  71. Mithanthaya I, Bhavanishankar Rao N (2015) Effect of Glass Powder and GGBS on Strength of Fly Ash Based Geopolymer Concrete. Int J Eng Trends Technol 19:66–71. https://doi.org/10.14445/22315381/ijett-v19p213

    Article  Google Scholar 

  72. Mithanthaya IR, Marathe S, Rao NBS, Bhat V (2017) Influence of superplasticizer on the properties of geopolymer concrete using industrial wastes. Mater Today Proc 4:9803–9806. https://doi.org/10.1016/j.matpr.2017.06.270

    Article  Google Scholar 

  73. Redden R, Neithalath N (2014) Microstructure, strength, and moisture stability of alkali activated glass powder-based binders. Cem Concr Compos 45:46–56. https://doi.org/10.1016/j.cemconcomp.2013.09.011

    Article  CAS  Google Scholar 

  74. Rashidian-Dezfouli H, Rangaraju PR (2017) A comparative study on the durability of geopolymers produced with ground glass fiber, fly ash, and glass-powder in sodium sulfate solution. Constr Build Mater 153:996–1009. https://doi.org/10.1016/j.conbuildmat.2017.07.139

    Article  CAS  Google Scholar 

  75. Vaitkevičius V, Šerelis E, Hilbig H (2014) The effect of glass powder on the microstructure of ultra high performance concrete. Constr Build Mater 68:102–109. https://doi.org/10.1016/j.conbuildmat.2014.05.101

    Article  Google Scholar 

  76. Omran AF, Etienne DM, Harbec D, Tagnit-Hamou A (2017) Long-term performance of glass-powder concrete in large-scale field applications. Constr Build Mater 135:43–58. https://doi.org/10.1016/j.conbuildmat.2016.12.218

    Article  CAS  Google Scholar 

  77. Elaqra HA, Haloub MAA, Rustom RN (2019) Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete. Constr Build Mater 203:75–82. https://doi.org/10.1016/j.conbuildmat.2019.01.077

    Article  CAS  Google Scholar 

  78. He Z, Zhan P, min, Du S gui, et al (2019) Creep behavior of concrete containing glass powder. Compos Part B Eng 166:13–20. https://doi.org/10.1016/j.compositesb.2018.11.133

  79. Vijayakumar G, Vishaliny H, Govindarajulu D (2013) Studies on glass powder as partial replacement of cement in concrete production. Int J Emerg Technol Adv Eng 3:153–157

    Google Scholar 

  80. Rahman A, Barai A, Sarker A, Moniruzzaman M (2018) Light weight concrete from rice husk ash and glass powder. Bangladesh J Sci Ind Res 53:225–232. https://doi.org/10.3329/bjsir.v53i3.38270

    Article  CAS  Google Scholar 

  81. Patel D, Tiwari RP, Shrivastava R, Yadav RK (2019) Effective utilization of waste glass powder as the substitution of cement in making paste and mortar. Constr Build Mater 199:406–415. https://doi.org/10.1016/j.conbuildmat.2018.12.017

    Article  CAS  Google Scholar 

  82. Dipten M, Bharath MS, Deepika S, Santhanam M (2017) Glass powder based geopolymer binder for precast concrete. RILEM Annu Week ICACMS 2017:193–201

    Google Scholar 

  83. Shoaei P, Ameri F, Reza Musaeei H et al (2020) Glass powder as a partial precursor in Portland cement and alkali-activated slag mortar: A comprehensive comparative study. Constr Build Mater 251. https://doi.org/10.1016/j.conbuildmat.2020.118991

  84. Zhang B, He P, Poon CS (2020) Optimizing the use of recycled glass materials in alkali activated cement (AAC) based mortars. J Clean Prod 255:120228. https://doi.org/10.1016/j.jclepro.2020.120228

    Article  CAS  Google Scholar 

  85. Pillay DL, Olalusi OB, Mostafa MMH (2020) A review of the engineering properties of concrete with paper mill waste ash — towards sustainable rigid pavement construction. Silicon. https://doi.org/10.1007/s12633-020-00664-2

  86. Toniolo N, Taveri G, Hurle K et al (2017) Fly-ash-based geopolymers: How the addition of recycled glass or red mud waste influences the structural and mechanical properties. J Ceram Sci Technol 8:411–419. https://doi.org/10.4416/JCST2017-00053

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Vellore Institute of Technology, Chennai, India, for extending their kind support and motivation to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

P. Manikandan: Writing original draft, Writing – review and Editing. V.Vasugi: Conceptualization, Writing – review and editing, Visualization, Supervision.

Corresponding author

Correspondence to V. Vasugi.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest. 

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, P., Vasugi, V. A Critical Review of Waste Glass Powder as an Aluminosilicate Source Material for Sustainable Geopolymer Concrete Production. Silicon 13, 3649–3663 (2021). https://doi.org/10.1007/s12633-020-00929-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00929-w

Keywords

Navigation