Skip to main content
Log in

Quantum algorithm for preparing the ground state of a physical system through multi-step quantum resonant transitions

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a quantum algorithm for preparing the ground state of a physical system by using a multi-step quantum resonant transition (QRT) method. We construct a sequence of intermediate Hamiltonians to reach the system Hamiltonian, and then, starting from the ground state of an initial Hamiltonian, the system is sequentially evolved to the ground states of the intermediate Hamiltonians step by step using the QRT method, finally reaching the ground state of the system Hamiltonian. The algorithm can be run efficiently if the overlap between the ground states of any two adjacent Hamiltonians and the energy gap between the ground state and the first excited state of each Hamiltonian are not exponentially small. By using this algorithm, preparing the ground state of a system is transformed to simulating the time evolution of a sequence of time-independent Hamiltonians. This algorithm can also be used for calculating energy eigenvalues of a physical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lloyd, S.: Universal quantum simulators. Science 273, 1073–78 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  2. Abrams, D.S., Lloyd, S.: Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett. 83, 5162 (1999)

    Article  ADS  Google Scholar 

  3. Poulin, D., et al.: Quantum algorithm for spectral measurement with lower gate count. Phys. Rev. Lett. 121, 010501 (2018)

    Article  ADS  Google Scholar 

  4. Cubitt, T., Montanaro, A.: Complexity classification of local Hamiltonian problems. SIAM J. Comput. 45, 268 (2016)

    Article  MathSciNet  Google Scholar 

  5. Kempe, J., Kitaev, A., Regev, O.: The complexity of the local Hamiltonian problem. SIAM J. Comput. 35, 1070 (2006)

    Article  MathSciNet  Google Scholar 

  6. Schuch, N., Verstraete, F.: Computational complexity of interacting electrons and fundamental limitations of density functional theory. Nat. Phys. 5, 732 (2009)

    Article  Google Scholar 

  7. Whitfield, J.D., Love, P.J., Aspuru-Guzik, A.: Computational complexity in electronic structure. Phys. Chem. Chem. Phys. 15, 397 (2013)

    Article  Google Scholar 

  8. Kitaev, A.Y.: Quantum measurements and the Abelian Stabilizer Problem, e-print quant-ph/9511026 (1995)

  9. Aspuru-Guzik, A., Dutoi, A.D., Love, P.J., Head-Gordon, M.: Simulated quantum computation of molecular energies. Science 309, 1704 (2005)

    Article  ADS  Google Scholar 

  10. Yung, M.-H., et al.: From transistor to trapped-ion computers for quantum chemistry. Sci. Rep. 4, 3589 (2014)

    Article  Google Scholar 

  11. Peruzzo, A., et al.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014)

    Article  ADS  Google Scholar 

  12. McClean, J., Romero, J., Babbush, R., Aspuru-Guzik, A.: The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18, 023023 (2016)

    Article  ADS  Google Scholar 

  13. O’Malley, P.J.J., et al.: Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016)

    Google Scholar 

  14. Motta, M., et al.: Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat. Phys. 16, 205 (2019)

    Article  Google Scholar 

  15. Farhi, E., Goldstone, J., Gutmann, S.: A Numerical Study of the Performance of a Quantum Adiabatic Evolution Algorithm for Satisfiability, e-print quant-ph/0007071v1 (2000)

  16. Farhi, E., et al.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  17. Born, M., Fock, V.: Beweis des Adiabatensatzes. Zeit. Phys. 51, 165 (1928)

    Article  ADS  Google Scholar 

  18. Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Wang, H., Ashhab, S., Nori, F.: Quantum algorithm for obtaining the energy spectrum of a physical system. Phys. Rev. A 85, 062304 (2012)

    Article  ADS  Google Scholar 

  20. Wang, H.: Quantum algorithm for obtaining the eigenstates of a physical system. Phys. Rev. A 93, 052334 (2016)

    Article  ADS  Google Scholar 

  21. Li, Z., et al.: Quantum simulation of resonant transitions for solving the eigenproblem of an effective water Hamiltonian. Phys. Rev. Lett. 122, 090504 (2019)

    Article  ADS  Google Scholar 

  22. Bravyi, S., et al.: Simulation of many-body hamiltonians using perturbation theory with bounded-strength interactions. Phys. Rev. Lett. 101, 070503 (2008)

    Article  ADS  Google Scholar 

  23. Biamonte, J.D., Love, P.: Realizable hamiltonians for universal adiabatic quantum computers. Phys. Rev. A 78, 012352 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. Jordan, S.P., Farhi, E.: Perturbative gadgets at arbitrary orders. Phys. Rev. A 77, 062329 (2008)

    Article  ADS  Google Scholar 

  25. Cao, Y., Babbush, R., Biamonte, J., Kais, S.: Hamiltonian gadgets with reduced resource requirements. Phys. Rev. A 91, 012315 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545 (1959)

    Article  MathSciNet  Google Scholar 

  27. Childs, A.M.: Quantum Information Processing in Continuous Time. Ph.D. thesis, Massachusetts Institute of Technology (2004)

  28. Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical zero knowledge. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, New York, pp. 20–29 (2003)

  29. Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146, 319 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  30. Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys. 270, 359 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. Childs, A.M., Maslov, D., Nam, Y., Ross, N.J., Su, Y.: Toward the first quantum simulation with quantum speedup. Proc. Natl. Acad. Sci. 115, 9456 (2018)

    Article  MathSciNet  Google Scholar 

  32. Childs, A. M., Su, Y., Tran, M. C., Wiebe, N and Zhu, S.: A Theory of Trotter Error. arXiv:1912.08854v2 [quant-ph] (2019)

  33. Suzuki, M.: General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys. 32, 400 (1991)

  34. Childs, A.M., Wiebe, N.: Hamiltonian simulation using linear combinations of unitary operations. Quant. Inf. Comput. 12, 901 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett. 114, 090502 (2015)

    Article  ADS  Google Scholar 

  36. Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Exponential improvement in precision for simulating sparse Hamiltonians. In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, New York, pp. 283–292 (2014)

  37. Low, G.H., Chuang, I.L.: Optimal Hamiltonian simulation by quantum signal processing. Phys. Rev. Lett. 118, 010501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  38. Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019)

    Article  Google Scholar 

  39. Su, Y.: Framework for Hamiltonian simulation and beyond: standard-form encoding, qubitization, and quantum signal processing. Quantum 3, 21 (2019)

    Google Scholar 

  40. Gilyén, A., Su, Y., Low, G.H., Wiebe, N.: Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC 2019), pp. 193–204

  41. McArdle, S., et. al: Quantum Computational Chemistry. arXiv:1808.10402v3 [quant-ph] (2018)

  42. Kohn, W.: Nobel lecture: electronic structure of matterwave functions and density functionals. Rev. Mod. Phys. 71, 1253 (1999)

    Article  ADS  Google Scholar 

  43. Schmidt, M.W., Gordon, M.S.: The construction and interpretation of MCSCF wavefunctions. Annu. Rev. Phys. Chem. 49, 233 (1998)

    Article  ADS  Google Scholar 

  44. Wang, H., Kais, S., Aspuru-Guzik, A., Hoffmann, M.R.: Quantum algorithm for obtaining the energy spectrum of molecular systems. Phys. Chem. Chem. Phys. 10, 5388 (2008)

    Article  Google Scholar 

  45. Levine, I.N.: Quantum Chemistry. Prentice Hall Inc, Upper Saddle River (2000)

    Google Scholar 

  46. Szabo, A., Ostlund, N.S.: Modern Quantum Chemistry: Introduction to Advanced Electronic structure Theory. Dover Publications Inc, New York (1996)

    Google Scholar 

  47. Monz, T., et al.: Realization of a scalable Shor algorithm. Science 351, 1068 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank S. Ashhab, H. Xiang and S. C. Li for helpful discussions. This work was supported by the National Natural Science Foundation of China (Grant No. 11275145) and the Natural Science Fundamental Research Program of Shaanxi Province of China under Grants 2018JM1015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hefeng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Wang is supported by the National Natural Science Foundation of China under Grants 11275145 and the Natural Science Fundamental Research Program of Shaanxi Province of China under Grants 2018JM1015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yu, S. Quantum algorithm for preparing the ground state of a physical system through multi-step quantum resonant transitions. Quantum Inf Process 20, 40 (2021). https://doi.org/10.1007/s11128-020-02984-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02984-z

Keywords

JEL Classification

PACS

Navigation