Skip to main content
Log in

Correlation dimension and bifurcation analysis for the planar slider-crank mechanism with multiple clearance joints

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Joint clearance serves as a crucial element of nonlinearity in multibody systems. The quantization of the system chaos is conducive to not only the understanding of the nonlinear nature but the rationalization of system controlled parameters. In the present work, the system dynamics for the planar slider-crank mechanism with multiple clearance joints is depicted by the correlation dimension and bifurcation actions. Considering the obliqueness of the slider, the general configuration of the planar joint is proposed. Generalized coordinates and the Lagrangian approach are adopted to derive the dynamic motion equations. The effects of clearance size and driving speed on the bifurcations of the dynamic response are investigated. Furthermore, the fractal dimension of the strange attractor is identified by the correlation dimension from time series. Based on the Cao method, the Mutual Information (MI) function, and the Grassberger-Procaccia (G-P) algorithm, the controlled factors in the evaluation of correlation dimension are cautiously determined. Ultimately, the compound effect of translational and revolute clearance joints on the mechanism dynamics is featured. The numerical results testify that the correlation dimension of the slider displacement approximately saturates beyond a specific translational clearance value. Moreover, with the parameters used in this work, the complexity of system response seems to be more sensitive to the variation of translational clearance size than with the revolute joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(\mathbf{r}_{HK}\) :

Global position vector of point \(H\) to point \(K\)

\(\mathbf{s}_{k}^{OH}\) :

Position vector of point \(H\) in the body fixed coordinate of body \(k\) respect to the origin \(O_{k}\)

\(\mathbf{R}_{k}\) :

Rotation matrix of body \(k\)

\(\theta _{k}\) :

Revolute angle of the mass center of body \(k\) [rad]

\(\boldsymbol{\delta }\), \(\delta \) :

Vector and value of penetration [m]

\(\mathbf{v}_{T}\) :

Tangential velocity vector [m/s]

\(\mathbf{F}_{N}\), \(\mathbf{F}_{f}\) :

Normal and friction force vectors at the contact points [N]

\(\mathbf{Q}_{c}\) :

Vector of the resultant contact force [N]

\(K\) :

Generalized contact stiffness [N/m]

\(n\) :

Exponent of the force deformation characteristics

\(E_{k}\) :

Elastic module of body \(k\) [Pa]

\(\upsilon _{k}\) :

Poisson’s ratio of body \(k\)

\(\dot{\delta }^{\left ( - \right )}\) :

Initial impact velocity [m/s]

\(c_{e}\) :

Restitution coefficient

\(c_{t}\) :

Normal clearance in the translational joint [m]

\(c_{r}\) :

Normal clearance in the revolute joint [m]

\(S\) :

Area of the contact region [m2]

\(L_{s}\), \(L_{c}\) :

Length and width of the rectangular surface for contact region [m]

\(\mu \) :

Friction coefficient

\(z\) :

Average bristle deflection [m/N]

\(\sigma _{0}\) :

Bristle stiffness [N/m]

\(\sigma _{1}\) :

Microscopic damping [Ns/m]

\(\sigma _{2}\) :

Viscous friction coefficient

\(\mu _{k}\) :

Coefficient of kinetic friction

\(\mu _{\mathrm{s}}\) :

Coefficient of static friction

\(\gamma \) :

Shape factor of Stribeck curve

\(\omega \) :

Angular velocity of the crank [rad/s]

\(\varphi \) :

Orientation angle of resultant contact forces [rad]

\(\mathbf{M}_{c}\) :

Moment vector originated in contact forces [Nm]

\(L\) :

Lagrangian function [Nm]

\(T\), \(U\) :

System kinetic and potential energies [Nm]

\(q_{k}\) :

Generalized coordinate

\(Q_{nc,k}\) :

Generalized force

\(\dot{u}\) :

Time derivative of variable \(u\)

\(\tau \) :

Time delay

\(p(x, y)\) :

Joint probability density for time series \(x\) and \(y\)

\(C\)(\(\varepsilon \)):

Correlation function respect to the radial \(\varepsilon \)

\(m\) :

Embedding dimension

\(D\) :

Correlation dimension

\(E_{1}(m), E_{2}(m)\) :

Indexes determined by the Cao method

References

  1. Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018)

    Article  Google Scholar 

  2. Azimi Olyaei, A., Ghazavi, M.R.: Stabilizing slider-crank mechanism with clearance joints. Mech. Mach. Theory 53, 17–29 (2012)

    Article  Google Scholar 

  3. Xiao, M., Geng, G., Li, G., Li, H., Ma, R.: Analysis on dynamic precision reliability of high-speed precision press based on Monte Carlo method. Nonlinear Dyn. 90(4), 2979–2988 (2017)

    Article  Google Scholar 

  4. Flores, P.: Dynamic analysis of mechanical systems with imperfect kinematic joints. https://doi.org/10.13140/RG.2.1.2962.4806

  5. Salahshoor, E., Ebrahimi, S., Zhang, Y.: Frequency analysis of a typical planar flexible multibody system with joint clearances. Mech. Mach. Theory 126, 429–456 (2018)

    Article  Google Scholar 

  6. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011)

    Article  Google Scholar 

  7. Tian, Q., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87(13–14), 913–929 (2009)

    Article  Google Scholar 

  8. Li, Y., Wang, C., Huang, W.: Dynamics analysis of planar rigid-flexible coupling deployable solar array system with multiple revolute clearance joints. Mech. Syst. Signal Process. 117, 188–209 (2019)

    Article  Google Scholar 

  9. Mukras, S., Kim, N.H., Mauntler, N.A., Schmitz, T.L., Sawyer, W.G.: Analysis of planar multibody systems with revolute joint wear. Wear 268(5–6), 643–652 (2010)

    Article  Google Scholar 

  10. Zheng, E., Zhu, R., Zhu, S., Lu, X.: A study on dynamics of flexible multi-link mechanism including joints with clearance and lubrication for ultra-precision presses. Nonlinear Dyn. 83(1–2), 137–159 (2016)

    Article  MathSciNet  Google Scholar 

  11. Wang, Z., Tian, Q., Hu, H., Flores, P.: Nonlinear dynamics and chaotic control of a flexible multibody system with uncertain joint clearance. Nonlinear Dyn. 86(3), 1571–1597 (2016)

    Article  Google Scholar 

  12. Rahmanian, S., Ghazavi, M.R.: Bifurcation in planar slider–crank mechanism with revolute clearance joint. Mech. Mach. Theory 91, 86–101 (2015)

    Article  Google Scholar 

  13. Ma, J., Qian, L.: Modeling and simulation of planar multibody systems considering multiple revolute clearance joints. Nonlinear Dyn. 90(3), 1907–1940 (2017)

    Article  MathSciNet  Google Scholar 

  14. Bai, Z.F., Sun, Y.: A study on dynamics of planar multibody mechanical systems with multiple revolute clearance joints. Eur. J. Mech. A, Solids 60, 95–111 (2016)

    Article  Google Scholar 

  15. Farahan, S.B., Ghazavi, M.R., Rahmanian, S.: Bifurcation in a planar four-bar mechanism with revolute clearance joint. Nonlinear Dyn. 87(2), 955–973 (2017)

    Article  Google Scholar 

  16. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Translational joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3(1), 11007 (2008)

    Article  Google Scholar 

  17. Wu, X., Sun, Y., Wang, Y., Chen, Y.: Dynamic analysis of the double crank mechanism with a 3D translational clearance joint employing a variable stiffness contact force model. Nonlinear Dyn. 99(3), 1937–1958 (2020)

    Article  Google Scholar 

  18. Erkaya, S., Uzmay, İ.: Experimental investigation of joint clearance effects on the dynamics of a slider-crank mechanism. Multibody Syst. Dyn. 24(1), 81–102 (2010)

    Article  Google Scholar 

  19. Kappaganthu, K., Nataraj, C.: Nonlinear modeling and analysis of a rolling element bearing with a clearance. Commun. Nonlinear Sci. 16(10), 4134–4145 (2011)

    Article  Google Scholar 

  20. Serweta, W., Okolewski, A., Blazejczyk-Okolewska, B., Czolczynski, K., Kapitaniak, T.: Lyapunov exponents of impact oscillators with Hertz’s and Newton’s contact models. Int. J. Mech. Sci. 89, 194–206 (2014)

    Article  Google Scholar 

  21. Serweta, W., Okolewski, A., Blazejczyk-Okolewska, B., Czolczynski, K., Kapitaniak, T.: Mirror hysteresis and Lyapunov exponents of impact oscillator with symmetrical soft stops. Int. J. Mech. Sci. 101–102, 89–98 (2015)

    Article  Google Scholar 

  22. Liu, Y., Wang, Q., Xu, H.: Bifurcations of periodic motion in a three-degree-of-freedom vibro-impact system with clearance. Commun. Nonlinear Sci. 48, 1–17 (2017)

    Article  MathSciNet  Google Scholar 

  23. Yousuf, L.S.: Experimental and simulation investigation of nonlinear dynamic behavior of a polydyne cam and roller follower mechanism. Mech. Syst. Signal Process. 116, 293–309 (2019)

    Article  Google Scholar 

  24. Nie, C.: Correlation dimension of financial market. Phys. A, Stat. Mech. Appl. 473, 632–639 (2017)

    Article  Google Scholar 

  25. Lankarani, H.M.: Canonical Equations of Motion and Estimation of Parameters in the Analysis of Impact Problems. University of Arizona Press, Tucson (1988). PhD. Thesis

    Google Scholar 

  26. Swevers, J., Al-Bender, F., Ganseman, C.G., Projogo, T.: An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Trans. Autom. Control 45(4), 675–686 (2000)

    Article  MathSciNet  Google Scholar 

  27. Wilson, R., Fawcett, J.N.: Dynamics of the slider-crank mechanism with clearance in the sliding bearing. Mech. Mach. Theory 9(1), 61–80 (1974)

    Article  Google Scholar 

  28. Chen, Y., Sun, Y., Chen, C.: Dynamic analysis of a planar slider-crank mechanism with clearance for a high speed and heavy load press system. Mech. Mach. Theory 98, 81–100 (2016)

    Article  Google Scholar 

  29. Luo, G., Ma, L., Lv, X.: Dynamic analysis and suppressing chaotic impacts of a two-degree-of-freedom oscillator with a clearance. Nonlinear Anal., Real World Appl. 10(2), 756–778 (2009)

    Article  MathSciNet  Google Scholar 

  30. Lioulios, A.N., Antoniadis, I.A.: Effect of rotational speed fluctuations on the dynamic behaviour of rolling element bearings with radial clearances. Int. J. Mech. Sci. 48(8), 809–829 (2006)

    Article  Google Scholar 

  31. Yang, D., Zhou, J.: Connections among several chaos feedback control approaches and chaotic vibration control of mechanical systems. Commun. Nonlinear Sci. 19(11), 3954–3968 (2014)

    Article  MathSciNet  Google Scholar 

  32. Peterka, F., Kotera, T., Čipera, S.: Explanation of appearance and characteristics of intermittency chaos of the impact oscillator. Chaos Solitons Fractals 19(5), 1251–1259 (2004)

    Article  Google Scholar 

  33. Takens, F.: Detecting strange attractors in turbulence. Lect. Notes Math. 898, 366–381 (1981)

    Article  MathSciNet  Google Scholar 

  34. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134–1140 (1986)

    Article  MathSciNet  Google Scholar 

  35. Jiang, J.D., Chen, J., Qu, L.S.: The application of correlation dimension in gearbox condition monitoring. J. Sound Vib. 223(4), 529–541 (1999)

    Article  Google Scholar 

  36. Theiler, J.: Spurious dimension from correlation algorithms applied to limited time-series data. Phys. Rev. A, Gen. Phys. 34(3), 2427–2432 (1986)

    Article  Google Scholar 

  37. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D, Nonlinear Phenom. 9(1), 189–208 (1983)

    Article  MathSciNet  Google Scholar 

  38. Ding, M., Grebogi, C., Ott, E., Sauer, T., Yorke, J.A.: Estimating correlation dimension from a chaotic time series: when does plateau onset occur? Phys. D, Nonlinear Phenom. 69(3), 404–424 (1993)

    Article  MathSciNet  Google Scholar 

  39. Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D, Nonlinear Phenom. 110(1), 43–50 (1997)

    Article  Google Scholar 

  40. Gleick, J., Hilborn, R.C.: Chaos, making a new science. Am. J. Phys. 56(11), 1053–1054 (1988)

    Article  Google Scholar 

Download references

Acknowledgement

The work is supported by Natural Science Foundation of the National Natural Science Foundation of China (No. 52005230) and National Science and Technology Major Project of China (No. 2019ZX04029-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Sun.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Sun, Y., Wang, Y. et al. Correlation dimension and bifurcation analysis for the planar slider-crank mechanism with multiple clearance joints. Multibody Syst Dyn 52, 95–116 (2021). https://doi.org/10.1007/s11044-020-09769-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09769-3

Keywords

Navigation