Skip to main content

Advertisement

Log in

Cannabidiol induces antidepressant and anxiolytic‐like effects in experimental type-1 diabetic animals by multiple sites of action

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Cannabidiol (CBD), a phytocannabinoid compound, presents antidepressant and anxiolytic-like effects in the type-1 diabetes mellitus(DM1) animal model. Although the underlying mechanism remains unknown, the type-1A serotonin receptor (5-HT1A) and cannabinoids type-1 (CB1) and type-2 (CB2) receptors seem to play a central role in mediating the beneficial effects on emotional responses. We aimed to study the involvement of these receptors on an antidepressant- and anxiolytic-like effects of CBD and on some parameters of the diabetic condition itself. After 2 weeks of the DM1 induction in male Wistar rats by streptozotocin (60 mg/kg; i.p.), animals were treated continuously for 2-weeks with the 5-HT1A receptor antagonist WAY100635 (0.1 mg/kg, i.p.), CB1 antagonist AM251 (1 mg/kg i.p.) or CB2 antagonist AM630 (1 mg/kg i.p.) before the injection of CBD (30 mg/kg, i.p.) or vehicle (VEH, i.p.) and then, they were submitted to the elevated plus-maze and forced swimming tests. Our findings show the continuous treatment with CBD improved all parameters evaluated in these diabetic animals. The previous treatment with the antagonists − 5-HT1A, CB1, or CB2 - blocked the CBD-induced antidepressant-like effect whereas only the blockade of 5-HT1A or CB1 receptors was able to inhibit the CBD-induced anxiolytic-like effect. Regarding glycemic control, only the blockade of CB2 was able to inhibit the beneficial effect of CBD in reducing the glycemia of diabetic animals. These findings indicated a therapeutic potential for CBD in the treatment of depression/anxiety associated with diabetes pointing out a complex intrinsic mechanism in which 5-HT1A, CB1, and/or CB2 receptors are differently recruited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdelwahed OM, Tork OM, Gamal El Din MM et al (2018) Effect of glucagon-like peptide-1 analogue; Exendin-4, on cognitive functions in type 2 diabetes mellitus; possible modulation of brain derived neurotrophic factor and brain visfatin. Brain Res Bull 139:67–80

    Article  CAS  PubMed  Google Scholar 

  • Adeyemi DO, Adewole OS (2019) Hibiscus sabdariffa renews pancreatic β-cells in experimental type 1 diabetic model rats. Morphologie 103:80–93

    Article  CAS  PubMed  Google Scholar 

  • Aftab A, Bhat C, Gunzler D et al (2018) Associations among comorbid anxiety, psychiatric symptomatology, and diabetic control in a population with serious mental illness and diabetes: findings from an interventional randomized controlled trial. Int J Psychiatry Med 53:126–140

    Article  PubMed  Google Scholar 

  • Aghazadeh Tabrizi M, Baraldi PG, Ruggiero E et al (2016) Synthesis and structure activity relationship investigation of triazolo[1,5-a]pyrimidines as CB2 cannabinoid receptor inverse agonists. Eur J Med Chem 113:11–27

    Article  CAS  PubMed  Google Scholar 

  • Anderson RJ, Freedland KE, Clouse RE et al (2001) The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care 24:1069–1078

    Article  CAS  PubMed  Google Scholar 

  • Anderson RL, Randall MD, Chan SL (2013) The complex effects of cannabinoids on insulin secretion from rat isolated islets of Langerhans. Eur J Pharmacol 706(1–3):56–62

    Article  CAS  PubMed  Google Scholar 

  • Aswar U, Chepurwar S, Shintre S et al (2017) Telmisartan attenuates diabetes induced depression in rats. Pharmacol Rep 69:358–364

    Article  CAS  PubMed  Google Scholar 

  • Bambico FR, Duranti A, Tontini A et al (2009) Endocannabinoids in the treatment of mood disorders: evidence from animal models. Curr Pharm Des 15(14):1623–1646

    Article  CAS  PubMed  Google Scholar 

  • Basha RH, Sankaranarayanan C (2014) β-Caryophyllene, a natural sesquiterpene, modulates carbohydrate metabolism in streptozotocin-induced diabetic rats. Acta Histochem 116(8):1469–1479

    Article  CAS  PubMed  Google Scholar 

  • Basha RH, Sankaranarayanan C (2016) β-Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats. Chem Biol Interact 245:50–58

    Article  CAS  PubMed  Google Scholar 

  • Bermúdez-Silva FJ, Sanchez-Vera I, Suárez J et al (2007) Role of cannabinoid CB2 receptors in glucose homeostasis in rats. Eur J Pharmacol 565(1–3):207–211

    Article  PubMed  Google Scholar 

  • Bhattacharjee S, Bhattacharya R, Kelley GA et al (2013) Antidepressant use and new-onset diabetes: a systematic review and meta-analysis. Diabetes Metab Res Rev 29(4):273–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisogno T, Hanus L, De Petrocellis L et al (2001) Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 134(4):845–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boden MT (2018) Prevalence of mental disorders and related functioning and treatment engagement among people with diabetes. J Psychosom Res 106:62–69

    Article  PubMed  Google Scholar 

  • Booz GW (2011) Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress. Free Rad Biol Med 51:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Bystritsky A, Danial J, Kronemyer D (2014) Interactions between diabetes and anxiety and depression: implications for treatment. Endocrinol Metab Clin North Am 43:269–283

    Article  PubMed  Google Scholar 

  • Campos AC, Guimarães FS (2008) Involvement of 5HT1A receptors in the anxiolytic-like effects of cannabidiol injected into the dorsolateral periaqueductal gray of rats. Psychopharmacology 199:223–230

    Article  CAS  PubMed  Google Scholar 

  • Campos AC, Moreira FA, Gomes FV et al (2012) Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philos Trans R Soc B 367:3364–3378

    Article  CAS  Google Scholar 

  • Campos AC, Fogaça MV, Sonego AB et al (2016) Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacol Res 112:119–127

    Article  CAS  PubMed  Google Scholar 

  • Campos AC, Fogaça MV, Scarante FF et al (2017) Plastic and neuroprotective mechanisms involved in the therapeutic effects of cannabidiol in psychiatric disorders. Front Pharmacol 8:269

    Article  PubMed  PubMed Central  Google Scholar 

  • Carbone F, Mach F, Vuilleumier N et al (2014) Cannabinoid receptor type 2 activation in atherosclerosis and acute cardiovascular diseases. Curr Med Chem 21(35):4046–4058

    Article  CAS  PubMed  Google Scholar 

  • Cassano T, Gaetani S, Macheda T et al (2011) Evaluation of the emotional phenotype and serotonergic neurotransmission of fatty acid amide hydrolase-deficient mice. Psychopharmacology 214:465–476

    Article  CAS  PubMed  Google Scholar 

  • Cassano T, Villani R, Pace L et al (2020) From Cannabis sativa to cannabidiol: Promising therapeutic candidate for the treatment of neurodegenerative diseases. Front Pharmacol 11:124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chadwick VL, Rohleder C, Koethe D et al (2020) Cannabinoids and the endocannabinoid system in anxiety, depression, and dysregulation of emotion in humans. Curr Opin Psychiatry 33(1):20–42

    Article  PubMed  Google Scholar 

  • Chaves YC, Genaro K, Stern CA et al (2020) Two-weeks treatment with cannabidiol improves biophysical and behavioral deficits associated with experimental type-1 diabetes. Neurosci Lett 729:135020

    Article  CAS  PubMed  Google Scholar 

  • Chen DJ, Gao M, Gao FF et al (2017) Brain cannabinoid receptor 2: expression, function and modulation. Acta Pharmacol Sin 38(3):312–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crippa JA, Derenusson GN, Ferrari TB et al (2011) Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: a preliminar report. J Psychopharmacol 25(1):121–130

    Article  CAS  PubMed  Google Scholar 

  • Crippa JA, Guimarães FS, Campos AC et al (2018) Translational investigation of the therapeutic potential of cannabidiol (CBD): toward a new age. Front Immunol 9:2009

    Article  PubMed  PubMed Central  Google Scholar 

  • da Silva Dias IC, Carabelli B, Ishii DK et al (2016) Indoleamine-2,3-Dioxygenase/Kynurenine pathway as a potential pharmacological target to treat depression associated with diabetes. Mol Neurobiol 53(10):6997–7009

    Article  PubMed  Google Scholar 

  • Damián JP, Acosta V, da Cuña M et al (2014) Effect of resveratrol on behavioral performance of streptozotocin-induced diabetic mice in anxiety tests. Exp Anim 63(3):277–287

    Article  PubMed  PubMed Central  Google Scholar 

  • Dantzer R, O’Connor JC, Lawson MA et al (2011) Inflammation-associated depression: From serotonin to kynurenine. Psychoneuroendocrinology 36:426–436

    Article  CAS  PubMed  Google Scholar 

  • de Gregorio D, McLaughlin RJ, Posa L et al (2019) Cannabidiol modulates serotonergic transmission and reverses both allodynia and anxiety-like behavior in a model of neuropathic pain. Pain 160(1):136–150

    Article  PubMed  Google Scholar 

  • de Mello Schier AR, de Oliveira Ribeiro NP, Coutinho DS et al (2014) Antidepressant-like and anxiolytic-like effects of cannabidiol: a chemical compound of Cannabis sativa. CNS Neurol. Disord Drug Targets 13:953–960

    Article  Google Scholar 

  • de Morais H, Souza CP, Silva LM et al (2014) Increased oxidative stress in prefrontal cortex and hippocampus is related to depressive-like behavior in streptozotocin-diabetic rats. Behav Brain Res 258:52–64

    Article  PubMed  Google Scholar 

  • de Morais H, Souza CP, Silva LM et al (2016) Anandamide reverses depressive-like behavior, neurochemical abnormalities and oxidative-stress parameters in streptozotocin-diabetic rats: Role of CB1 receptors. Eur J Pharmacol 26:1590–1600

    Google Scholar 

  • de Morais H, Chaves Y, Waltrick A et al (2018) Sub-chronic treatment with cannabidiol but not with URB597 induced a mild antidepressant-like effect in diabetic rats. Neurosci Lett 682:62–68

    Article  PubMed  Google Scholar 

  • de Souza CP, Gambeta E, Stern CAJ et al (2018) Posttraumatic stress disorder-type behaviors in streptozotocin-induced diabetic rats can be prevented by prolonged treatment with vitamin E. Behav Brain Res 359:749–754

    Article  PubMed  Google Scholar 

  • Delkhosh-Kasmaie F, Farshid AA, Tamaddonfard E et al (2018) The effects of safranal, a constitute of saffron, and metformin on spatial learning and memory impairments in type-1 diabetic rats: behavioral and hippocampal histopathological and biochemical evaluations. Biomed Pharmacother 107:203–211

    Article  CAS  PubMed  Google Scholar 

  • Detke MJ, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology 121(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Devinsky O, Cilio MR, Cross H et al (2014) Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 55(6):791–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhavale HS, Panikkar V, Jadhav BS et al (2013) Depression and diabates: impact of anti-depressant medications on glycaemic control. J Assoc Physicians India 61(12):896–899

    CAS  PubMed  Google Scholar 

  • Di Marzo V, Piscitelli F, Mechoulam R (2011) Cannabinoids and endocannabinoids in metabolic disorders with focus on diabetes. Handb Exp Pharmacol 203:75–104

    Article  Google Scholar 

  • Díaz-Gerevini GT, Daín A, Pasqualini ME et al (2019) Diabetic encephalopathy: beneficial effects of supplementation with fatty acids ω3 and nordihydroguaiaretic acid in a spontaneous diabetes rat model. Lipids Health Dis 18(1):43

    Article  PubMed  PubMed Central  Google Scholar 

  • dos Santos RG, Guimarães FS, Crippa J et al (2020) Serious adverse effects of cannabidiol (CBD): a review of randomized controlled trials. Expert Opin Drug Metab Toxicol 16(6):517–526

    Article  PubMed  Google Scholar 

  • Elbaz M, Ahirwar D, Ravi J et al (2017) Novel role of cannabinoid receptor 2 in inhibiting EGF/EGFR and IGF-I/IGF-IR pathways in breast cancer. Oncotarget 8(18):29668–29678

    Article  PubMed  Google Scholar 

  • El-Remessy AB, Al-Shabrawey M, Khalifa Y et al (2006) Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes. Am J Pathol 168(1):235–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esposito G, Scuderi C, Valenza M et al (2011) Cannabidiol reduces A-Induced neuroinflammation and promotes hippocampal neurogenesis through PPARy. involvement PLoS ONE 6:12

    Google Scholar 

  • Fogaça MV, Reis FMCV, Campos AC et al (2014) Effects of intra-prelimbic prefrontal cortex injection of cannabidiol on anxiety-like behavior: involvement of 5HT1A receptors and previous stressful experience. Eur Neuropsychopharmacol 24:410–419

    Article  PubMed  Google Scholar 

  • Fogaça MV, Campos AC, Coelho LD et al (2018) Neuropharmacology The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: Role of neurogenesis and dendritic remodeling. Neuropharmacology 135:22–33

    Article  PubMed  Google Scholar 

  • Freitas HR, Isaac AR, Malcher-Lopes R et al (2017) Polyunsaturated fatty acids and endocannabinoids in health and disease. Nutr Neurosci 7:1–20

    CAS  Google Scholar 

  • Gaetani S, Dipasquale P, Romano A et al (2009) The endocannabinoid system as a target for novel anxiolytic and antidepressant drugs. Int Rev Neurobiol 85:57–72

    Article  CAS  PubMed  Google Scholar 

  • Gagnon J, Lussier MT, Macgibbon B et al (2018) The impact of antidepressant therapy on glycemic control in Canadian Primary Care patients with Diabetes Mellitus. Front Nutr 5:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Gambeta E, Souza CP, de Morais H (2015) Reestablishment of the hyperglycemia to the normal levels seems not to be essential to the anxiolytic-like effect induced by insulin. Metab Brain Dis 31(3):563–571

    Article  PubMed  Google Scholar 

  • Gobbi G, Bambico FR, Mangieri R et al (2005) Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci 102:18620–18625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes FV, Resstel LB, Guimarães FS (2011) The anxiolytic-like effects of cannabidiol injected into the bed nucleus of the stria terminalis are mediated by 5-HT1A receptors. Psychopharmacology 213:465–473

    Article  CAS  PubMed  Google Scholar 

  • Grigsby AB, Anderson RJ, Freedland KE et al (2002) Prevalence of anxiety in adults with diabetes: A systematic review. J Psychosom Res 53:1053–1060

    Article  PubMed  Google Scholar 

  • Gruden G, Barutta F, Kunos G et al (2016) Role of the endocannabinoid system in diabetes and diabetic complications. Br J Pharmacol 173(7):1116–1127

    Article  CAS  PubMed  Google Scholar 

  • Gupta D, Radhakrishnan M, Kurhe Y (2014) Ondansetron, a 5HT3 receptor antagonist reverses depression and anxiety-like behavior in streptozotocin-induced diabetic mice: possible implication of serotonergic system. Eur J Pharmacol 744:59–66

    Article  CAS  PubMed  Google Scholar 

  • Han X, Min M, Wang J et al (2018) Quantitative profiling of neurotransmitter abnormalities in brain, cerebrospinal fluid, and serum of experimental diabetic encephalopathy male rat. J Neurosci Res 96(1):138–150

    Article  CAS  PubMed  Google Scholar 

  • Häring M, Grieb M, Monory K et al (2013) Cannabinoid CB1 receptor in the modulation of stress coping behavior in mice: the role of serotonin and different forebrain neuronal subpopulations. Neuropharmacology 65:83–89

    Article  PubMed  Google Scholar 

  • Hill MN, Hillard CJ, Bambico FR et al (2009) The therapeutic potential of the endocannabinoid system for the development of a novel class of antidepressants. Trends Pharmacol Sci 30(9):484–493

    Article  CAS  PubMed  Google Scholar 

  • Horváth B, Mukhopadhyay P, Haskó G et al (2012) The endocannabinoid system and plant-derived cannabinoids in diabetes and diabetic complications. Am J Pathol 180(2):432–442

    Article  PubMed  PubMed Central  Google Scholar 

  • Izzo AA, Borrelli F, Capasso R et al (2009) Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci 30(10):515–527

    Article  CAS  PubMed  Google Scholar 

  • Jadoon KA, Ratcliffe SH, Barrett DA et al (2016) Efficacy and safety of cannabidiol and tetrahydrocannabivarin on glycemic and lipid parameters in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel group pilot study. Diabetes Care 39(10):1777–1786

    Article  CAS  PubMed  Google Scholar 

  • Jesus CHA, Redivo DDB, Gasparin AT et al (2019) Cannabidiol attenuates mechanical allodynia in streptozotocin-induced diabetic rats via serotonergic system activation through 5-HT1A receptors. Brain Res 1715:159–164

    Article  Google Scholar 

  • Joseph JJ, Golden SH (2017) Cortisol dysregulation: the bidirectional link between stress, depression, and type 2 diabetes mellitus. Ann N Y Acad Sci 1391(1):20–34

    Article  PubMed  Google Scholar 

  • Juan-Picó P, Fuentes E, Bermúdez-Silva FJ et al (2006) Cannabinoid receptors regulate Ca(2+) signals and insulin secretion in pancreatic beta-cell. Cell Calcium 39(2):155–162

    Article  PubMed  Google Scholar 

  • Kampling H, Petrak F, Farin E et al (2017) Trajectories of depression in adults with newly diagnosed type 1 diabetes: results from the German Multicenter Diabetes Cohort Study. Diabetologia 60(1):60–68

    Article  CAS  PubMed  Google Scholar 

  • Kendall DA, Yudowski GA (2017) Cannabinoid receptors in the central nervous system: their signaling and roles in disease. Front Cell Neurosci 10:294

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumawat VS, Kaur G (2019) Therapeutic potential of cannabinoid receptor 2 in the treatment of diabetes mellitus and its complications. Eur J Pharmacol 862:172628

    Article  CAS  PubMed  Google Scholar 

  • Latas M, Vučinić Latas D, Spasić Stojaković M (2019) Anxiety disorders and medical illness comorbidity and treatment implications. Curr Opin Psychiatry 32(5):429–434

    Article  PubMed  Google Scholar 

  • Lehmann C, Fisher NB, Tugwell B et al (2016) Experimental cannabidiol treatment reduces early pancreatic inflammation in type 1 diabetes. Clin Hemorheol Microcirc 64(4):655–662

    Article  CAS  PubMed  Google Scholar 

  • Leweke FM, Piomelli D, Pahlisch F et al (2012) Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry 2(3):e94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Jones PM, Persaud SJ (2010) Cannabinoid receptors are coupled to stimulation of insulin secretion from mouse MIN6 beta-cells. Cell Physiol Biochem 26(2):187–196

    Article  PubMed  Google Scholar 

  • Li C, Bowe JE, Huang GC et al (2011) Cannabinoid receptor agonists and antagonists stimulate insulin secretion from isolated human islets of Langerhans. Diabetes Obed Metab 13(10):903–910

    Article  CAS  Google Scholar 

  • Lin EHB, Von Korff M, Alonso J et al (2008) Mental disorders among persons with diabetes – Results from the World Mental Health Surveys. J Psychosom Res 65(6):571–580

    Article  PubMed  PubMed Central  Google Scholar 

  • Linge R, Jiménez-Sánchez L, Campa L et al (2016) Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission: role of 5-HT1A receptors. Neuropharmacology 103:16–26

    Article  CAS  PubMed  Google Scholar 

  • Lustman PJ, Griffith LS, Gavard JA et al (1992) Depression in adults with diabetes. Diabetes Care 15:1631–1639

    Article  CAS  PubMed  Google Scholar 

  • Lutz B, Marsicano G, Maldonado R et al (2015) The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neuroscience 16(12):705–718

    Article  CAS  PubMed  Google Scholar 

  • Maia ACO, Braga AA, Paes A et al (2014) Psychiatric comorbidity in diabetes type 1: a cross-sectional observational study. Ver Assoc Med Bras 60(1):59–62

    Article  Google Scholar 

  • Martel JC, Ormière AM, Leduc N et al (2007) Native Rat Hippocampal 5-HT1A Receptors Show Constitutive Activity. Mol Pharmacol 71:638–643

    Article  CAS  PubMed  Google Scholar 

  • Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16(1):22–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moulton CD, Pickup JC, Ismail K (2015) The link between depression and diabetes: the search for shared mechanisms. Lancet Diabetes Endocrinol 3:461–471

    Article  PubMed  Google Scholar 

  • Muriach M, Flores-Bellver M, Romero FJ et al (2014) Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid Med Cell Longev 2014:102158

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagappan A, Shin J, Jung MH (2019) Role of cannabinoid receptor type 1 in insulin resistance and its biological implications. Int J Mol Sci 20(9):2109

    Article  CAS  PubMed Central  Google Scholar 

  • Navarro G, Morales P, Rodríguez-Cueto C et al (2016) Targeting cannabinoid CB2 receptors in the central nervous system. Medicinal chemistry approaches with focus on neurodegenerative disorders. Front Neurosci 10:406

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira WH, Nunes AK, França ME et al (2016) Effects of metformin on inflammation and short-term memory in streptozotocin-induced diabetic mice. Brain Res 1644:149–160

    Article  PubMed  Google Scholar 

  • Patel S, Hill MN, Cheer JF et al (2017) The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci Biobehav Rev 76(Pt A):56–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira MM, de Morais H, dos Santos Silva E et al (2018) The antioxidant gallic acid induces anxiolytic-, but not antidepressant-like effect, in streptozotocin-induced diabetes. Metab Brain Dis 33(5):1573–1584

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Blavet N et al (1979) Immobility induced by forced swimming in rats: effects of agents wich modify central catecholamine and serotonin activity. Eur J Pharmacol 57(2–3):201–210

    Article  CAS  PubMed  Google Scholar 

  • Pouwer F (2017) Depression: a common and burdensome complication of diabetes that warrants the continued attention of clinicians, researchers and healthcare policy makers. Diabetologia 60(1):30–34

    Article  PubMed  Google Scholar 

  • Prabhkar V, Gupta D, Kanade P et al (2015) Diabates-associated depression: The serotonergic system as a novel multifunctional target. Indian J Pharmacol 47(1):4–10

    Article  Google Scholar 

  • Pugazhenthi S, Qin L, Reddy PH (2017) Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 1863(5):1037–1045

    Article  CAS  PubMed  Google Scholar 

  • Redivo DD, Schreiber AK, Adami ER et al (2016) Effect of ômega-3 polyunsaturated fatty acid treatment over mechanical allodynia and depressive-like behavior associated with experimental diabetes. Behav Brain Res 298:57–64

    Article  CAS  PubMed  Google Scholar 

  • Réus GZ, Stringari RB, Ribeiro KF et al (2011) Administration of cannabidiol and imipramine induces antidepressant-like effects in the forced swimming test and increases brain-derived neurotrophic factor levels in the rat amygdala. Acta Neuropsychiatric 23:241–248

    Article  Google Scholar 

  • Réus GZ, Augusta M, Santos B et al (2017) Pathophysiological mechanisms involved in the relationship between diabetes and major depressive disorder. Life Sci 183:78–82

    Article  PubMed  Google Scholar 

  • Ribeiro TO, Bueno-De-Camargo LM, Waltrick APF et al (2020) Activation of mineralocorticoid receptors facilitate the acquisition of fear memory extinction and impair the generalization of fear memory in diabetic animals. Psychopharmacol 237:529–542

    Article  CAS  Google Scholar 

  • Rock EM, Bolognini D, Limebeer CL et al (2012) Cannabidiol, a nonpsychotropic component of cannabis, attenuates vomiting and nausea-like behaviour via indirect agonism of 5-HT(1A) somatodendritic autoreceptors in the dorsal raphe nucleus. Br J Pharmacol 165:2620e2634

    Article  Google Scholar 

  • Rom S, Zuluaga-Ramirez V, Gajghate S et al (2019) Hyperglycemia-driven neuroinflammation compromises BBB leading to memory loss in both Diabetes Mellitus (DM) Type 1 and Type 2 mouse models. Mol Neurobiol 56(3):1883–1896

    Article  CAS  PubMed  Google Scholar 

  • Roy T, Lloyd CE (2012) Epidemiology of depression and diabetes: A systematic review. J Affective Disord 142S1:S8–S21

    Article  Google Scholar 

  • Russo EB, Burnett A, Hall B et al (2005) Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem Res 30(8):1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Sales AJ, Crestani CC, Guimarães FS et al (2018) Antidepressant-like effect induced by Cannabidiol is dependent on brain serotonin levels. Prog Neuropsychopharmacol Biol Psychiatry 86:255–261

    Article  CAS  PubMed  Google Scholar 

  • Sales AJ, Fogaça MV, Sartim AG et al (2019) Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex. Mol Neurobiol 56(2):1070–1081

    Article  CAS  PubMed  Google Scholar 

  • Santos FRM, Bernardo V, Gabbay MAL et al (2013) The impact of knowledge about diabetes, resilience and depression on glycemic control: A cross-sectional study among adolescents and young adults with type 1 diabetes. Diabetol Metab Syndr 5(1):55

    Article  PubMed  PubMed Central  Google Scholar 

  • Sartim AG, Guimarães FS, Joca SR (2016) Antidepressant-like effect of cannabidiol injection into the ventral medial prefrontal cortex - possible involvement of 5-HT1A and CB1 receptors. Behav Brain Res 303:218–227

    Article  CAS  PubMed  Google Scholar 

  • Schiavon AP, Bonato JM, Milani H et al (2016) Influence of single and repeated cannabidiol administration on emotional behavior and markers of cell proliferation and neurogenesis in non-stressed mice. Prog Neuropsychopharmacol Biol Psychiatry 64:27–34

    Article  CAS  PubMed  Google Scholar 

  • Shang Y, Tang Y (2017) The central cannabinoid receptor type-2 (CB2) and chronic pain. Int J Neurosci 127(9):812–823

    Article  CAS  PubMed  Google Scholar 

  • Silote GP, Sartim A, Sales A et al (2019) Emerging evidence for the antidepressant effect of cannabidiol and the underlying molecular mechanisms. J Chem Neuroanat 98:104–116

    Article  CAS  PubMed  Google Scholar 

  • Smith KJ, Deschênes SS, Schmitz N (2018) Investigating the longitudinal association between diabetes and anxiety: a systematic review and meta-analysis. Diabet Med 35:677–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffens S, Pacher P (2012) Targeting cannabinoid receptor CB(2) in cardiovascular disorders: promises and controversies. Br J Pharmacol 167(2):313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suijun W, Zhen Y, Ying G et al (2014) A role for trans-caryophyllene in the moderation of insulin secretion. Biochem Biophys Res Commun 444(4):451–454

    Article  CAS  PubMed  Google Scholar 

  • Turcotte C, Blanchet MR, Laviolette M et al (2016) The CB2 receptor and its role as a regulator of inflammation. Cell Mol Life Sci 73(23):4449–4470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilches-Flores A, Franklin Z, Hauge-Evans AC et al (2016) Prolonged activation of human islet cannabinoid receptors in vitro induces adaptation but not dysfunction. BBA Clinical 5:143–150

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Kayano Y, Matsunaga T et al (1996) Inhibition of anandamide amidase activity in mouse brain microsomes by cannabinoids. Biol Pharm Bull 19:1109 ± 1111

    Article  Google Scholar 

  • Weiss L, Zeira M, Reich S et al (2006) Cannabidiol lowers incidence of diabetes in non-obese diabetic mice. Autoimmunity 39(2):143–151

    Article  CAS  PubMed  Google Scholar 

  • Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115(5):1111–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Chen W, Zhang S et al (2019) Rotenone protects against β-cell apoptosis and attenuates type 1 diabetes mellitus. Apoptosis 24:879–891

    Article  CAS  PubMed  Google Scholar 

  • Xourgia E, Papazafiropoulou A, Melidonis A (2019) Antidiabetic treatment on memory and spatial learning: From the pancreas to the neuron. World J Diabetes 10(3):169–180

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanelati TV, Biojone C, Moreira FA et al (2010) Antidepressant-like effects of cannabidiol in mice: possible involvement of 5-HT 1A receptors. Br J Pharmacol 159:122–128

    Article  CAS  PubMed  Google Scholar 

  • Zanoveli JM, de Morais H, da Silva ICD et al (2015) Depression associated with diabetes: from pathophysiology to treatment. Curr Diabetes Rev 11:11–14

    Google Scholar 

  • Zhou D, Li Y, Tian T et al (2017) Role of the endocannabinoid system in the formation and development of depression. Pharmazie 72(8):435–439

    CAS  PubMed  Google Scholar 

  • Zuardi AW, Rodrigues NP, Silva AL et al (2017) Inverted u-shaped dose-response curve of the anxiolytic effect of cannabidiol during public speaking in real life. Front Pharmacol 8:259

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

YC Chaves is recipient of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) fellowship.

Funding

The present study was partially supported by a CNPq grants (Universal 01/2016; 408517/2016-6; CNPq/MS/SCTIE/DECIT N∘ 26/2014 – Pesquisas sobre Distúrbios Neuropsiquiátricos; 466805/2014-4). JAC is a recipient of fellowship awards from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil – 1A).

Author information

Authors and Affiliations

Authors

Contributions

Janaína M Zanoveli and Joice Maria da Cunha proposed the study and wrote the manuscript.

Yane C. Chaves conducted all behavioral tests.

José A Crippa and Karina Genaro kindly donate the cannabidiol.

All the authors contributed to the data analysis and interpretation and approved the final version of the manuscript.

Corresponding author

Correspondence to Janaína Menezes Zanoveli.

Ethics declarations

Declaration of conflicting interests

JAC is co-inventor (Mechoulam R, JC, Guimaraes FS, AZ, JH, Breuer A) of the patent “Fluorinated CBD compounds, compositions and uses thereof. Pub. No.: WO/2014/108899. International Application No.: PCT/IL2014/050023” Def. US no. Reg. 62,193,296; 29/07/2015; INPI on 19/08/2015 (BR1120150164927). The University of São Paulo has licensed the patent to Phytecs Pharm (USP Resolution No. 15.1.130002.1.1). The University of São Paulo has an agreement with Prati-Donaduzzi (Toledo, Brazil) to “develop a pharmaceutical product containing synthetic cannabidiol and prove its safety and therapeutic efficacy in the treatment of epilepsy, schizophrenia, Parkinson’s disease, and anxiety disorders.” JAC has received travel support from and was medical advisor of SCBD Centre. JAC has received a grant from University Global Partnership Network (UGPN) – “Global priorities in cannabinoid research excellence.” JAC is member of the international advisory board of The Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), funded by the National Health and Medical Research Council through the Centre of Research Excellence).

Ethics approval

All experiments were conducted in accordance with the rules and legislation contained by the UFPR Animal Research Ethics Committee (CEUA number #1106).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaves, Y.C., Genaro, K., Crippa, J.A. et al. Cannabidiol induces antidepressant and anxiolytic‐like effects in experimental type-1 diabetic animals by multiple sites of action. Metab Brain Dis 36, 639–652 (2021). https://doi.org/10.1007/s11011-020-00667-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-020-00667-3

Keywords

Navigation