Skip to main content
Log in

The Role of Cytoskeleton of a Red Blood Cell in Its Deformability

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

The red blood cell (RBC) is unique in terms of its structure and function when compared to other cells in the blood and body. Its anucleated characteristic and biconcave shape (indicative of high surface area to volume ratio) render it deformable. This deformability is useful during circulation when the red blood cell has to traverse capillaries smaller than its size. The cytoskeleton of the red blood cell, a two dimensional sheet like structure with dynamic linkages, plays a major role in its deformability. The interdependent relationship between the cytoskeleton and RBC deformability under various conditions such as metabolism, hematologic and systemic disorders and senescence is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:

Similar content being viewed by others

References

  1. Ness Paul M, Stengle James M (1974) The red blood cell, vol 1, 2nd edn. Academic Press, Cambridge

    Google Scholar 

  2. Sergio Piomelli, Carol Seaman (1993) Mechanism of red blood cell aging: relationship of cell density and cell age. Am J Hematol 42:46–52

    Article  Google Scholar 

  3. VerkLeij AJ, Zwall RFA, Roelofsen B, Comfurius P, Kastelijn D, Van Deenen LLM (1973) The asymmetric distribution of phospholipids in the human red cell membrane: a combined study using phopholipases and free-etch electron microscopy. Biochim Biophys Acta 323:178–193

    Article  CAS  Google Scholar 

  4. Yoshihito Y (2003) Cell membrane: the red blood cell as a model, 1st edn. Wiley-VCH, New Jersey

    Google Scholar 

  5. Narla M, Gallagher Patrick G (2008) Red cell membrane: past, present, and future. Blood 112(10):3939–3948

    Article  Google Scholar 

  6. Fairbanks G, Steck TL, Wallace DFH (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10(13):2606–2617

    Article  CAS  Google Scholar 

  7. Steck Theodore L, Fairbanks G, Wallach DFH (1971) Disposition of the major proteins in the isolated erythrocyte membrane proteolytic dissection. Biochemistry 10(13):2617–2624

    Article  Google Scholar 

  8. Steck Theodore L (1974) The organization of proteins in the human red blood cell membrane. J Cell Biol 62:1–19

    Article  Google Scholar 

  9. Nakao M (1990) Blood cell biochemistry. In: Erythroid cells, vol 1, Springer Science, Berlin

  10. Byers Timothy J, Daniel B (1985) Visualization of the protein associations in the erythrocyte membrane skeleton. Proc Natl Acad Sci USA 82:6153–6157

    Article  Google Scholar 

  11. Shen Betty W, Robert J, Steck Theodore L (1986) Ultrastructure of the intact skeleton of the human erythrocyte membrane. J Cell Biol 102:997–1006

    Article  Google Scholar 

  12. Minoru T, Hiroshi M, Yasushi S, Hideo K, Akihiro K (1998) Structure of the erythrocyte membrane skeleton as observed by atomic force microscopy. Biophys J 74:2171–2183

    Article  Google Scholar 

  13. Cohen Carl M, Daniel B (1979) The role of spectrin in erythrocyte membrane-stimulated actin polymerisation. Nature 279:163–165

    Article  Google Scholar 

  14. Daniel B, Cohen Carl M, Jonathan T (1981) Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell 24:24–32

    Article  Google Scholar 

  15. Tyler Jonathan M, Hargreaves William R, Daniel B (1979) Purification of two spectrin-binding proteins: biochemical and electron microscopic evidence for site-specific reassociation between spectrin and bands 2.1 and 4.1. Proc Natl Acad Sci 76(10):5192–5196

    Article  Google Scholar 

  16. Discher DE, Mohandas N, Evans EA (1994) Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266:1032–1035

    Article  CAS  Google Scholar 

  17. Chasis JA, Narla M (1986) Erythrocyte membrane deformability and stability: two distinct membrane properties that are independently regulated by skeletal protein associations. J Cell Biol 103:343–350

    Article  CAS  Google Scholar 

  18. Shotton David M, Burke Brian E, Daniel B (1979) The molecular structure of human erythrocyte spectrin: biophysical and electron microscopic studies. J Mol Biol 131:303–329

    Article  Google Scholar 

  19. Waugh Richard E (1987) Effects of inherited membrane abnormalities on the viscoelastic properties of erythrocyte membrane. Biophys J 51:363–369

    Article  Google Scholar 

  20. McGough Amy M, Robert J (1990) On the structure of erythrocyte spectrin in partially expanded membrane skeletons. Proc Natl Acad Sci USA 87:5208–5212

    Article  Google Scholar 

  21. Karel S, Schmidt Christoph F, Daniel B, Block Steven M (1992) Conformation and elasticity of the isolated red blood cell membrane skeleton. Biophys J 63:784–793

    Article  Google Scholar 

  22. Leiting P, Rui Y, Wan L, Ke X (2018) Super-resolution microscopy reveals the native ultrastructure of the erythrocyte cytoskeleton. Cell Rep 22:1151–1158

    Article  Google Scholar 

  23. Grum Valerie L, Dongning L, MacDonald Ruby I, Alfonso M (1999) Structures of two repeats of spectrin suggest models of flexibility. Cell 98:523–535

    Article  Google Scholar 

  24. Pozrikidis C (2005) Axisymmetric motion of a file of red blood cells through capillaries. Phys Fluids 17:031503

    Article  Google Scholar 

  25. Skalak R, Tozeren A, Zarda RP, Chien S (1973) Strain energy function of red blood cell membranes. Biophys J 13:245–264

    Article  CAS  Google Scholar 

  26. Kellar Stuart R, Skalak R (1982) Motion of a tank-treading ellipsoidal particle in shear flow. J Fluid Mech 120:27–47

    Article  Google Scholar 

  27. Abkarian M, Faivre M, Viallat A (2007) Swinging of red blood cells under shear flow. Phys Rev Lett 98:188302

    Article  Google Scholar 

  28. Peng Z, Zhu Q (2013) Deformation of the erythrocyte cytoskeleton in tank treading motions. Soft Matter 9:7616–7627

    Article  Google Scholar 

  29. Huijie L, Peng Z (2019) Boundary integral simulations of a red blood cell squeezing through a submicron slit under prescribed inlet and outlet pressures. Phys Fluids 31:031902

    Article  Google Scholar 

  30. Li X, Huijie L, Peng Z (2018) Handbook of materials modeling, 2nd edn. Springer, Cham

    Google Scholar 

  31. Evans Evan A, LaCelle PL (1975) Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood 45(1):29–43

    Article  Google Scholar 

  32. Evans Evan A (1983) Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys J 43:27–30

    Article  Google Scholar 

  33. Evans EA, Waugh R, Melnik L (1976) Elastic area compressibility modulus or red cell membrane. Biophys J 16:585–595

    Article  CAS  Google Scholar 

  34. Dao M, Lim CT, Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51:2259–2280

    Article  Google Scholar 

  35. Dulinska I, Targosz M, Stronjny W, Lekka M, Czuba P, Balwierz W, Szymonski M (2006) Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy. J Biochem Biophys Methods 66:1–11

    Article  CAS  Google Scholar 

  36. Johnson Robert M (1989) Methods in enzymology. Academic Press Inc, Cambridge

    Google Scholar 

  37. Tomaiuolo G, Barra M, Preziosi V, Cassinese A, Rotoli B, Guido S (2011) Microfluidic analysis of red blood cell membrane viscoelasticity. Lab Chip 11:449–454

    Article  CAS  Google Scholar 

  38. Guo Q, Duffy Simon P, Matthews K, Santoso Aline T, Scott Mark D (2014) Microfluidic analysis of red blood cell deformability. J Biomech 47:1767–1776

    Article  Google Scholar 

  39. Nakao M, Nakao T, Yamazoe S (1960) Adenosine triphosphate and maintenance of shape of the human red cells. Nature 187(4741):945–946

    Article  CAS  Google Scholar 

  40. Park YK, Best Catherine A, Auth T, Gov Nir S, Safran Samuel A, Popescu G, Suresh S, Feld Michael S (2010) Metabolic remodeling of the human red blood cell membrane. Proc Natl Acad Sci 107(4):1289–1294

    Article  CAS  Google Scholar 

  41. Weed Robert I, LaCelle PL, Merrill Edward W, Craib G, Gregory A, Karch F, Pickens F (1969) Metabolic dependence of red cell deformability. J Clin Invest 48:795–809

    Article  Google Scholar 

  42. Picas L, Rico F, Deforet M, Scheuring S (2013) Structural and mechanical heterogeneity of the erythrocyte membrane reveals hallmarks of membrane stability. ACS Nano 7(2):1054–1063

    Article  CAS  Google Scholar 

  43. Sprague Raandy S, Ellsworth Mary L (1996) Atp: the red blood cell link to no and local control of the pulmonary circulation. Am J Physiol Heart Circulatory Physiol 271:H2717–H2722

    Article  Google Scholar 

  44. Wan J, Ristenpart William D, Stone Howard A (2008) Dynamics of shear-induced atp release from red blood cells. Proc Natl Acad Sci 105(43):16432–16437

    Article  CAS  Google Scholar 

  45. Huisjes R, Makhro A, Llaudet-Planas E, Hertz L, Petkova-Kirova P, Verhagen Liesbeth P, Pignatelli S, Rab MAE, Schiffelers RM, Seiler E, van Solinge WW, Corrons Joan-Lluis V, Kaestner L, Manu-Pereira M, Bogdanova A, van Wijk R, (2020) Density, heterogeneity and deformability of red cells as markers of clinical severity in hereditary spherocytosis. Haematologica 105(2):338–347

    Article  CAS  Google Scholar 

  46. Constance TN, Alan NS (1985) Sickle hemoglobin polymerization in solution and in cells. Annu Rev Biophys Biophys Chem 14:239–263

    Article  Google Scholar 

  47. Williams Thomas N, Swee LT (2018) Sickle cell anemia and its phenotypes. Annu Rev Genomics Hum Genet 19:113–47

    Article  CAS  Google Scholar 

  48. George A, Pushkaran S, Li L, An X, Zheng Y, Mohandas N, Joiner Clinton H, Kalfa Theodosia A (2010) Altered phophorylation of cytoskeleton proteins in sickle red blood cells: the role of protein kinase c, rac gtpases and reactive oxygen species. Blood Cells Mol Dis 45:41–45

    Article  CAS  Google Scholar 

  49. Maciaszek Jamie L, Lykotrafitis G (2011) Sickle cell trait human erythrocytes are significantly stiffer than normal. J Biomech 44:657–661

    Article  CAS  Google Scholar 

  50. Turner MS, Briehl RW, Wang JC, Ferrone FA, Josephs R (2006) Anisotropy in sickle hemoglobin fibers from variations in bending and twist. J Mol Biol 357(5):1422–1427

    Article  CAS  Google Scholar 

  51. Gambhire P, Atwell S, Iss C, Bedu F, Ozerov I, Badens C, Helfer E, Viallat A, Charrier A (2017) High aspect ratio sub-micrometer channels using wet etching: application to the dynamics of red blood cell transiting through biomimetic splenic slits. Small 1700967:1–11

    Google Scholar 

  52. Evans Evan A, Mohandas N (1987) Membrane associated sickle hemoglobin: a major determinant of sickle erythrocyte rigidity. Blood 70(5):1443–1449

    Article  Google Scholar 

  53. Mohandas N, Evans E (1994) Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Ann Rev Biophys Biomol Struct 23:787–818

    Article  CAS  Google Scholar 

  54. Ferrone Frank A (2004) Polymerization and sickle cell disease: a molecular view. Microcirculation 11(2):115–128

    Article  CAS  Google Scholar 

  55. Hebbel Robert P, Eaton John W, Balasingam M, Steinberg Martin H (1982) Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest 70:1253–1259

    Article  Google Scholar 

  56. Sheng K, Shariff M, Hebbel Robert P (1998) Comparative oxidation of hemoglobin a and s. Blood 91(9):3467–3470

    Article  CAS  Google Scholar 

  57. Hebbel Robert P, Leung A, Mohandas N (1990) Oxidation induced changes in microrheologic properties of the red blood cell membrane. Blood 76(5):1015–1020

    Article  Google Scholar 

  58. Joiner Clinton H, Kirk Rettig R, Jiang M, Franco Robert S (2004) Kcl cotransport mediates abnormal sulfhydryl-dependent volume regulation in sickle reticulocytes. Blood 104(9):2954–2960

    Article  CAS  Google Scholar 

  59. Dzandu James K, Johnson Robert M (1980) Membrane protein phosphorylation in intact normal and sickle cell erythrocytes. J Biol Chem 255(13):6382–6386

    Article  Google Scholar 

  60. Eaton John W, Skelton TD, Swofford Harold S, Kolpin Charles E, Jacob Harry S (1973) Elevated erythrocyte calcium in sickle cell disease. Nature 246(9):105–106

    Article  Google Scholar 

  61. Kilejian A (1979) Characterization of a protein correlated with the production of knob-like protrusions on membranes of erythrocytes infected with plasmodium falciparum. Proc Natl Acad Sci 76(9):4650–4653

    Article  CAS  Google Scholar 

  62. Hui Shi, Zhuo Liu, Ang Li, Jing Yin, Chong Alvin GL, Tan Kevin SW, Yong Z, Teck LC (2013) Life cyle-dependent cytoskeletal modifications in plasmodium falciparum infected erythrocytes. PLOS One 8(4):e61170

    Article  Google Scholar 

  63. Xinhong P, Xiuli A, Xinhua G, Michal T, Ross C, Narla M (2005) Strutural and functional studies of interaction between plasmodium falciparum knob-associated histidine-rich protein (kahrp) and erythrocyte spectrin. J Biol Chem 280(35):31166–71

    Article  Google Scholar 

  64. MillHolland Melanie G, Rajesh C, Angel P, Angela W, Hui S, Claire D, Lim CT, Greenbaum Doron C (2011) The malaria parasite progressively dismantles the host erythrocyte cytoskeleton for efficient egress. Mol Cell Proteomics 10(12):010678

    Google Scholar 

  65. Sherman Irwin W, Ian C, Heidi S (1992) Membrane proteins involved in the adherene of plasmodium falciparum infected erythrocytes to the endothelium. Biol Cell 74(2):161–178

    Article  Google Scholar 

  66. Buys Antoinette V, Van Rooy M-J, Prashilla S, Van Papendorp D, Boguslaw L, Etheresia P (2013) Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Cardiovasc Diabetol 12(25):1–6

    Google Scholar 

  67. Kowluru R, Bitensky MW, Kowluru A, Dembo M, Keaton PA, Buican T (1989) Reversible sodium pump defect and swelling in the diabetic rat erythrocyte: effects on filterability and implications for microangiopathy. Proc Natl Acad Sci 86:3327–3331

    Article  CAS  Google Scholar 

  68. Schmid-Schonbein H, Volger E (1976) Red-cell aggregation and red-cell deformability in diabetes. Diabetes 25(2):897–902

    CAS  Google Scholar 

  69. McMillan DE, Utterback NG, La Puma J, Barbara S (1978) Reduced erythrocyte deformability in diabetes. Diabetes 27(9):895–901

    Article  CAS  Google Scholar 

  70. Jain Sushil K (1989) Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J Biol Chem 264(35):21340–21345

    Article  Google Scholar 

  71. MacRury SM, Lennie SE, McColl P, Balendra R, MacCuish AC, Lowe GDO (1993) Increased red cell aggregation in diabetes mellitus: association with cardiovascular risk factors. Diabetic Med 10(1):21–26

    Article  CAS  Google Scholar 

  72. Rupesh A, Thomas S, Joao N-C, Christopher R, Rhythm B, Adnan T, David S, Jones Phil H, Carlos P (2016) Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique. Sci Rep 6:1–12

    Google Scholar 

  73. Samuel R (1968) An abnormal hemoglobin in red cells of diabetics. Clinica Chimica Acta 22(2):296–298

    Article  Google Scholar 

  74. Cezary W, Henryk W, Lidia O, Wojciech P (1992) The association between erythrocyte internal viscosity, protein non-enzymatic glycosylation and erythrocyte membrane dynamic propeties in juvenile diabetes mellitus. Int J Exp Pathol 73:655–663

    Google Scholar 

  75. AlSalhi MS, Devanesan S, AlZahrani KE, AlShebly M, Al-Qahtani F, Farhat K, Masilamani V (2018) Impact of diabetes mellitus on human erthrocytes: atomic force microscopy and spectral investigations. Int J Environ Res Public Health 15:2368

    Article  CAS  Google Scholar 

  76. Schwartz Robert S, Madsen John W, Rybicki Anne C, Nagel Ronald L (1991) Oxidation of spectrin and deformability defects in diabetic erythrocytes. Diabetes 40:701–708

    Article  Google Scholar 

  77. Mahindrakar YS, Suryakar AN, Ankush RD, Katkam RV, Kumbhar KM (2007) Comparison between erythrocyte hemoglobin and spectrin glycosylation and role of oxidative stress in type 2 diabetes mellitus. Indian J Clin Biochem 22(1):91–94

    Article  CAS  Google Scholar 

  78. Macrury SM, Lowe GDO (1990) Blood rheology in diabetes mellitus. Diabetic Med 7(4):285–291

    Article  CAS  Google Scholar 

  79. Roberts Anna C, Porter Karen E (2013) Cellular and molecular mechanisms of endothelial dysfunction in diabetes. Diabetes Vasc Dis Res 10(6):472–482

    Article  CAS  Google Scholar 

  80. Antonelou Marianna H, Kriebardis Anastasios G, Papassideri Issidora S (2010) Aging and death signalling in mature red cells: from basic science to transfusion practice. Blood Transfusion 8(3):s39–s47

    Google Scholar 

  81. Lutz Hans U, Anna B (2013) Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front Physiol 4(387):1–15

    Google Scholar 

  82. Fuzhou T, Dong C, Shichao Z, Wenhui H, Jin C, Houming Z, Zhu Z, Xiang W (2020) Elastic hysteresis loop acts as cell deformability in erythrocyte aging. Biochimica et Biophysica Acta Biomembranes 1862:183309

    Article  Google Scholar 

  83. Rifkind Joseph M, Enika N (2013) Hemoglobin redox reactions and red blood cell aging. Antioxidants Redox Signal 18(17):2274–2283

    Article  CAS  Google Scholar 

  84. Nash Gerard B, Meiselman Herbert J (1983) Red cell and ghost viscoelasticity. Biophys J 43(1):63–73

    Article  Google Scholar 

  85. Franco Robert S, Estela Puchulu-Campanella M, Barber Latorya A, Palascak Mary B, Joiner Clinton H, Low Philip S, Cohen Robert M (2013) Changes in the properties of normal human red blood cells during in vivo aging. Am J Hematol 88(1):44–51

    Article  CAS  Google Scholar 

  86. Snyder LM, Leb L, Piotrowski J, Sauberman N, Liu SC, Fortier NL (1983) Irreversible spectrin-haemoglobin crosslinking in vivo: a marker for red cell senescence. Br J Haematol 53:379–384

    Article  CAS  Google Scholar 

  87. Yao-Xiong H, Zheng-Jie W, Jitendra M, Bao-Tian H, Xing-Yao C, Xin-Jing Z, Wen-Jing L, Man L (2011) Human red blood cell aging: correlative changes in surface charge and cell properties. J Cell Mol Med 15(12):2634–2642

    Article  Google Scholar 

  88. Nurith S, Juan Y, Ranney Helen M (1977) Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore. Biochemistry 16(25):5585–5592

    Article  Google Scholar 

  89. Joseph W, Ranjit C, Steck Theodore L, Low Philip S, Musso Gary F, Kaiser ET, Rogers Paul H, Arthur A (1984) The interaction of hemoglobin with the cytoplasmic domain of band 3 of the human erythrocyte membrane. J Biol Chem 259(16):10238–10246

    Article  Google Scholar 

  90. Kaul Rajinder K, Heinz K (1983) Interaction of hemoglobin with band 3: a review. Klinische Wochenschrift 61:831–837

    Article  Google Scholar 

  91. Badidor Katherine E, Casey Joseph R (2018) Molecular mechanism for the red blood cell senescence clock. IUBMB Life 70:32–40

    Article  Google Scholar 

  92. Kay Marguerite MB (1975) Mechanism of removal of senescent cells by human macrophages in situ. Proc Natl Acad Sci USA 72(9):3521–3525

    Article  Google Scholar 

  93. Fortier N, Snyder LM, Garver F, Kiefer C, McKenney J, Mohandas N (1988) The relationship between in vivo generated hemoglobin skeletal protein complex and increased cell membrane rigidity. Blood 71:1427–1431

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.G. would like to acknowledge the funding from INSPIRE Faculty Grant, Department of Science and Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya Gambhire.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paradkar, S., Gambhire, P. The Role of Cytoskeleton of a Red Blood Cell in Its Deformability. J Indian Inst Sci 101, 39–46 (2021). https://doi.org/10.1007/s41745-020-00221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-020-00221-1

Keywords

Navigation