Skip to main content
Log in

FtsZ: The Force Awakens

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Binary fission of prokaryotic cells depends on a protein called FtsZ that self-assembles into a membrane-associated ring structure (FtsZ-ring) in the early stages of the cell division process. FtsZ is a tubulin homologue, which interacts with many additional proteins contributing to its function forming a ring at the mid-cell, essential for bacterial cell division. Whether the Z-ring is a force-generating machinery or a simple scaffold for organizing all other molecular players is poorly understood. Here, we review briefly the structure, dynamics, and interactions of FtsZ, the Z-ring and its associated proteins and weigh the evidence for and against force production by FtsZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1:
Figure 2:
Figure 3:

Similar content being viewed by others

References

  1. Adams DW, Errington J (2009) Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7(9):642–653

    Article  CAS  Google Scholar 

  2. Addinall SG, Bi E, Lutkenhaus J (1996) FtsZ ring formation in fts mutants. J Bacteriol 178(13):3877–3884

    Article  CAS  Google Scholar 

  3. Nogales E et al (1998) Tubulin and FtsZ form a distinct family of GTPases. Nat Struct Biol 5(6):451–458

    Article  CAS  Google Scholar 

  4. Lowe J, Amos LA (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature 391(6663):203–206

    Article  CAS  Google Scholar 

  5. Buske PJ, Levin PA (2012) Extreme C terminus of bacterial cytoskeletal protein FtsZ plays fundamental role in assembly independent of modulatory proteins. J Biol Chem 287(14):10945–10957

    Article  CAS  Google Scholar 

  6. Buske PJ, Levin PA (2013) A flexible C-terminal linker is required for proper FtsZ assembly in vitro and cytokinetic ring formation in vivo. Mol Microbiol 89(2):249–263

    Article  CAS  Google Scholar 

  7. Oliva MA, Cordell SC, Lowe J (2004) Structural insights into FtsZ protofilament formation. Nat Struct Mol Biol 11(12):1243–1250

    Article  CAS  Google Scholar 

  8. Krol E et al (2012) Bacillus subtilis SepF binds to the C-terminus of FtsZ. PLoS One 7(8):e43293

    Article  CAS  Google Scholar 

  9. Coltharp C, Xiao J (2017) Beyond force generation: why is a dynamic ring of FtsZ polymers essential for bacterial cytokinesis? BioEssays 39(1):1–11

    Article  CAS  Google Scholar 

  10. Buske PJ et al (2015) An intrinsically disordered linker plays a critical role in bacterial cell division. Semin Cell Dev Biol 37:3–10

    Article  CAS  Google Scholar 

  11. Lariviere PJ et al (2018) FzlA, an essential regulator of FtsZ filament curvature, controls constriction rate during Caulobacter division. Mol Microbiol 107(2):180–197

    Article  CAS  Google Scholar 

  12. Arumugam S et al (2012) Surface topology engineering of membranes for the mechanical investigation of the tubulin homologue FtsZ. Angew Chem Int Ed Engl 51(47):11858–11862

    Article  CAS  Google Scholar 

  13. Li Y et al (2013) FtsZ protofilaments use a hinge-opening mechanism for constrictive force generation. Science 341(6144):392–395

    Article  CAS  Google Scholar 

  14. Osawa M, Anderson DE, Erickson HP (2009) Curved FtsZ protofilaments generate bending forces on liposome membranes. EMBO J 28(22):3476–3484

    Article  CAS  Google Scholar 

  15. Housman M et al (2016) FtsZ protofilament curvature is the opposite of tubulin rings. Biochemistry 55(29):4085–4091

    Article  CAS  Google Scholar 

  16. Du S et al (2018) FtsZ filaments have the opposite kinetic polarity of microtubules. Proc Natl Acad Sci USA 115(42):10768–10773

    Article  CAS  Google Scholar 

  17. Yang X et al (2017) GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 355(6326):744–747

    Article  CAS  Google Scholar 

  18. Chen Y, Erickson HP (2005) Rapid in vitro assembly dynamics and subunit turnover of FtsZ demonstrated by fluorescence resonance energy transfer. J Biol Chem 280(23):22549–22554

    Article  CAS  Google Scholar 

  19. Whitley KD et al (2020) FtsZ treadmilling is essential for Z-ring condensation and septal constriction initiation in bacterial cell division. bioRxiv 2020.07.01.182006

  20. Bisson-Filho AW et al (2017) Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355(6326):739–743

    Article  CAS  Google Scholar 

  21. Arumugam S, Petrasek Z, Schwille P (2014) MinCDE exploits the dynamic nature of FtsZ filaments for its spatial regulation. Proc Natl Acad Sci USA 111(13):E1192–E1200

    Article  CAS  Google Scholar 

  22. Marmont LS, Bernhardt TG (2020) A conserved subcomplex within the bacterial cytokinetic ring activates cell wall synthesis by the FtsW-FtsI synthase. Proc Natl Acad Sci USA 117(38):23879–23885

    Article  CAS  Google Scholar 

  23. Li Z et al (2007) The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 26(22):4694–4708

    Article  CAS  Google Scholar 

  24. Lan G, Wolgemuth CW, Sun SX (2007) Z-ring force and cell shape during division in rod-like bacteria. Proc Natl Acad Sci USA 104(41):16110–16115

    Article  CAS  Google Scholar 

  25. Lan G et al (2009) Condensation of FtsZ filaments can drive bacterial cell division. Proc Natl Acad Sci USA 106(1):121–126

    Article  CAS  Google Scholar 

  26. Ghosh B, Sain A (2008) Origin of contractile force during cell division of bacteria. Phys Rev Lett 101(17):178101

    Article  Google Scholar 

  27. Surovtsev IV, Morgan JJ, Lindahl PA (2008) Kinetic modeling of the assembly, dynamic steady state, and contraction of the FtsZ ring in prokaryotic cytokinesis. PLoS Comput Biol 4(7):e1000102

    Article  Google Scholar 

  28. Nguyen LT, Oikonomou CM, Jensen GJ (2019) Simulations of proposed mechanisms of FtsZ-driven cell constriction. bioRxiv 737189

  29. Arumugam S, Chwastek G, Schwille P (2011) Protein-membrane interactions: the virtue of minimal systems in systems biology. Wiley Interdiscip Rev Syst Biol Med 3(3):269–280

    Article  CAS  Google Scholar 

  30. Osawa M, Erickson HP (2013) Liposome division by a simple bacterial division machinery. Proc Natl Acad Sci USA 110(27):11000–11004

    Article  CAS  Google Scholar 

  31. Osawa M, Anderson DE, Erickson HP (2008) Reconstitution of contractile FtsZ rings in liposomes. Science 320(5877):792–794

    Article  CAS  Google Scholar 

  32. Godino E et al (2020) Cell-free biogenesis of bacterial division proto-rings that can constrict liposomes. bioRxiv 2020.03.29.009639

  33. Ma X, Ehrhardt DW, Margolin W (1996) Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Natl Acad Sci USA 93(23):12998–13003

    Article  CAS  Google Scholar 

  34. Ma X et al (1997) Interactions between heterologous FtsA and FtsZ proteins at the FtsZ ring. J Bacteriol 179(21):6788–6797

    Article  CAS  Google Scholar 

  35. Geissler B, Shiomi D, Margolin W (2007) The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring. Microbiology (Reading) 153(Pt 3):814–825

    Article  CAS  Google Scholar 

  36. Chen Y et al (2017) ZipA and FtsA* stabilize FtsZ-GDP miniring structures. Sci Rep 7(1):3650

    Article  Google Scholar 

  37. Arjes HA et al (2015) Mutations in the bacterial cell division protein FtsZ highlight the role of GTP binding and longitudinal subunit interactions in assembly and function. BMC Microbiol 15:209

    Article  Google Scholar 

  38. Ramirez-Diaz DA et al (2018) Treadmilling analysis reveals new insights into dynamic FtsZ ring architecture. PLoS Biol 16(5):e2004845

    Article  Google Scholar 

  39. Pichoff S, Du S, Lutkenhaus J (2018) Disruption of divisome assembly rescued by FtsN-FtsA interaction in Escherichia coli. Proc Natl Acad Sci USA 115(29):E6855–E6862

    Article  CAS  Google Scholar 

  40. Pichoff S, Lutkenhaus J (2002) Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli. EMBO J 21(4):685–693

    Article  CAS  Google Scholar 

  41. Pichoff S, Lutkenhaus J (2007) Identification of a region of FtsA required for interaction with FtsZ. Mol Microbiol 64(4):1129–1138

    Article  CAS  Google Scholar 

  42. Pichoff S et al (2012) FtsA mutants impaired for self-interaction bypass ZipA suggesting a model in which FtsA’s self-interaction competes with its ability to recruit downstream division proteins. Mol Microbiol 83(1):151–167

    Article  CAS  Google Scholar 

  43. Shiomi D, Margolin W (2007) Dimerization or oligomerization of the actin-like FtsA protein enhances the integrity of the cytokinetic Z ring. Mol Microbiol 66(6):1396–1415

    CAS  Google Scholar 

  44. Shiomi D, Margolin W (2008) Compensation for the loss of the conserved membrane targeting sequence of FtsA provides new insights into its function. Mol Microbiol 67(3):558–569

    Article  CAS  Google Scholar 

  45. Goley ED et al (2010) Imaging-based identification of a critical regulator of FtsZ protofilament curvature in Caulobacter. Mol Cell 39(6):975–987

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthil Arumugam.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadu, N., Namboothiri, A. & Arumugam, S. FtsZ: The Force Awakens. J Indian Inst Sci 101, 31–38 (2021). https://doi.org/10.1007/s41745-020-00215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-020-00215-z

Navigation