Skip to main content

Advertisement

Log in

Synthesis and Characterization of Hydroxypropyl Acorn Starch (HPAS) From Oak Acorn

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The utilization of forest auxiliary products and their conversion into products with higher added value is important for the use of renewable resources. For this purpose, acorns belonging to the Q. coccifera species were collected in November, which is their ripening period, and dried and ground in the laboratory. Then, acorn starch (AS) was isolated from the sieved acorn flour. For 5 g of this isolated AS, hydroxypropyl acorn starch (HPAS) with the highest molar substitution (MS = 0.319) was synthesized by optimizing at 45 °C for 5 h with 30 g of propylene oxide and 1.88 g of NaOH. The structures of HPASs synthesized were characterized by FT-IR, XRD and 1H (13C)-NMR spectroscopy, and their MS values were determined. In addition, surface morphologies with SEM images and thermal stability with DTA-TG thermograms were examined. Since hydroxypropyl acorn starch has not been synthesized from acorn starch before, this study contributed to the literature and science. It has been understood that HPASs can also be used in many areas where hydroxypropyl starch is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jaiswal P, Kumar KJ (2015) Physicochemical properties and release characteristics of starches from seeds of Indian shahi litchi. Int J Biol Macromol 79:256–261

    CAS  PubMed  Google Scholar 

  2. Vamadevan V, Bertoft E (2015) Structure-function relationships of starch components. Starch/Starke 67:55–68

    CAS  Google Scholar 

  3. Rababah TM, Ereifej KI, Al-Mahasneh MA, Alhamad MN, Alrababah MA, Muhammad AH (2008) The physicochemical composition of acorns for two mediterranean Quercus species. Jordan J Agric Sci 4(2):131–137

    Google Scholar 

  4. Ugurlu E, Rolecek J, Bergmeier E (2012) Oak woodland vegetation of Turkey-a first overview based on multivariate statistics. Appl Veg Sci 15:590–608

    Google Scholar 

  5. Bergner A, Türkay OÇ, Eryigit H, Avcı M (2018) Overview of the bird diversity in oak (Quercus spp.) forest habitats in Isparta province, southwestern Turkish Anatolia. Turk J For 19(4):347–354

    Google Scholar 

  6. Saffarzadeh A, Vincze L, Csapo J (1999) Determination of the chemical composition of acorn (Quercusbranti), Pistacia atlantica and Pistacia khinjuk seed as non-conventional feedstuffs. Acta Agr Kaposvarensis 3(3):59–69

    Google Scholar 

  7. Kaya E, Kamalak A (2012) Potential nutritive value and condensed tannin contents of acorns from different Oak species. J Kafkas Univ Fac Vet Med 18(6):1061–1066

    Google Scholar 

  8. Irinislimane H, Belhaneche-Bensemra N (2017) Extraction and characterization of starch from oak acorn, sorghum, and potato and adsorption application for removal of maxilon red GRL from wastewater. Chem Eng Commun 204(8):897–906

    CAS  Google Scholar 

  9. Sweedman MC, Tizzotti MJ, Schafer C, Gilbert RG (2013) Structure and physicochemical properties of octenyl succinic anhydride modified starches: a review. Carbohyd Polym 92:905–920

    CAS  Google Scholar 

  10. Chen Q, Yu H, Wang L, ul Abdin Z, Chen Y, Wang J, Zhou W, Yang X, Khan RU, Zhang H, Chen X (2015) Recent progress in chemical modification of starch and its applications. RSC Adv. 5:67459

    CAS  Google Scholar 

  11. Shah N, Mewada RK, Mehta T (2016) Crosslinking of starch and its effect on viscosity behavior. Rev Chem Eng 32:265–270

    CAS  Google Scholar 

  12. Alcazar Alay SC, Meireles MAA (2015) Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci Technol 35:215–236

    Google Scholar 

  13. Neelam K, Vijay S, Lalit S (2012) Various techniques for the modification of starch and the applications of its derivatives. Int Res J Pharm 3(5):25–31

    Google Scholar 

  14. Egharevba HO (2020) Chemical properties of starch and its application in the food industry. In: Emeje M (ed) Chemical properties of starch biochemistry, vol 9. Intech Open, London

    Google Scholar 

  15. Pal J, Singhal RS, Kulkarni PR (2000) A comparative account of conditions of synthesis of hydroxypropyl derivative from corn and amaranth starch. Carbohyd Polym 43(2):155–162

    CAS  Google Scholar 

  16. Singh J, Kaur L, McCarthy OJ (2007) Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—a review. Food Hydrocoll 21(1):1–22

    CAS  Google Scholar 

  17. Jiang Y, Ju B, Zhang S, Yang J (2010) Preparation and application of a new cationic starch ether—starch–methylene dimethylamine hydrochloride. Carbohyd Polym 80:467–547

    CAS  Google Scholar 

  18. Lin D, Zhou W, He Q, Xing B, Wu Z, Chen H, Wu D, Zhang Q, Qin W (2019) Study on preparation and physicochemical properties of hydroxypropylated starch with different degree of substitution under microwave assistance. Int J Biol Macromol 125:290–299

    CAS  PubMed  Google Scholar 

  19. Ju B, Yan D, Zhang S (2012) Micelles self-assembled from thermoresponsive 2-hydroxy-3-butoxypropyl starches for drug delivery. Carbohyd Polym 87(2):1404–1409

    CAS  Google Scholar 

  20. Senanayake S, Gunaratne A, Ranaweera KKDS, Bamunuarachchi A (2014) Effect of hydroxypropylation on functional properties of different cultivars of sweet potato starch in Sri Lanka. Int J Food Sci. https://doi.org/10.1155/2014/148982

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lawal OS (2011) Hydroxypropylation of pigeon pea (Cajanus Cajan) starch: preparation, functional characterizations and enzymatic digestibility. LWT Food Sci Technol 44(3):771–778

    CAS  Google Scholar 

  22. Arueya GL, Ojesanmi AA (2019) Evaluation of effects of increasing molar substitution of hydroxypropylene on physicochemical, functional and morphological properties of starch from water yam (Dioscorea alata). J Food Res. https://doi.org/10.5539/jfr.v8n4p58

    Article  Google Scholar 

  23. Oladebeye AO, Oshodi AA, Amoo IA, Karim AA (2013) Hydroxypropyl derivatives of legume starches: functional, rheological and thermal properties. Starch/Starke 65:762–772

    CAS  Google Scholar 

  24. Correia PR, Beiraoda Costa ML (2010) Chestnut and acorn starch properties affected by isolation methods. Starch/Starke 62:421–428

    CAS  Google Scholar 

  25. Lim WJ, Liang YT, Seib PA, Rao CS (1992) Isolation of oat starch from oat flour. Cereal Chem 69:233–236

    CAS  Google Scholar 

  26. Rutkaite R, Baranauskiene R, Peciulyte L, Pukalskiene M, Venskutonis PR (2016) Preparation and properties of propylene oxide and octenylsuccinic anhydride modified potato starches. J Food Sci Technol 53(12):4187–4196

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Woggum T, Sirivongpaisal P, Wittaya T (2015) Characteristics and properties of hydroxypropylated rice starch based biodegradable films. Food Hydrocoll 50:54–64

    CAS  Google Scholar 

  28. Rutenberg MW, Solarek D (1984) Chapter 10. In: Whistler RL, Bemiller JN, Paschall EF (eds) Starch: chemistry and technology, 2nd edn. Academic Press, New York, pp 311–366

    Google Scholar 

  29. Hasan M, Rusman R, Khaldun I, Ardana L, Mudatsir M, Fansuri H (2020) Active edible sugar palm starch-chitosan films carrying extra virgin olive oil: barrier, thermo-mechanical, antioxidant, and antimicrobial properties. Int J Biol Macromol 163:766–775

    CAS  PubMed  Google Scholar 

  30. Hasan M, Gopakumar DA, Olaiya NG, Zarlaida F, Alfian A, Aprinasari C, Alfatah T, Rizal S, Abdul Khalil HPS (2020) Evaluation of the thermomechanical properties and biodegradation of brown rice starch-based chitosan biodegradable composite films. Int J Biol Macromol 156:896–905

    CAS  PubMed  Google Scholar 

  31. Lawal OS (2009) Starch hydroxyalkylation: physicoschemical properties and enzymatic digestibility of native and hydroxypropylated finger millet (Eleusine coracana) starch. Food Hydrocoll 23:415–425

    CAS  Google Scholar 

  32. Lawal OS, Ogundiran OO, Adesogan EK, Ogunsanwo BM, Sosanwo OA (2008) Effect of Hydroxypropylation on the properties of white yam (Dioscorearotundata) starch. Starch/Starke 60:340–348

    CAS  Google Scholar 

  33. Lee HL, Yoo B (2011) Effect of hydroxypropylation on physical and rheological properties of sweet potato starch. LWT Food Sci Technol 44:765–770

    CAS  Google Scholar 

  34. Choi SG, Kerr WL (2004) Swelling characteristics of native and chemically modified wheat starches as a function of heating temperature and time. Starch/Starke 56:181–189

    CAS  Google Scholar 

  35. Kim M (2003) Evaluation of degradability of hydroxypropylated potato starch/ polyethylene blend films. Carbohyd Polym 54(2):173–181

    CAS  Google Scholar 

  36. Huber KC, BeMiller JN (2001) Location of sites of reaction within starch granules. Cereal Chem 78:173–180

    CAS  Google Scholar 

  37. Kaur L, Singh N, Singh J (2004) Factors influencing the properties of hydroxypropylated potato starches. Carbohyd Polym 55(2):211–223

    CAS  Google Scholar 

  38. Salim AB, Chin SF, Pang SC (2020) Hydroxypropyl starch nanoparticles as controlled release nanocarriers for piperine. J Nanostruct 10:327–336

    CAS  Google Scholar 

  39. Aminian M, Nafchi AM, Bolandi M, Alias AK (2013) Preparation and characterization of high degree substituted sago (Metroxylon sagu) starch with propylene oxide. Starch/Starke 65:686–693

    CAS  Google Scholar 

  40. Sukhija S, Singh S, Riar CS (2016) Effect of oxidation, cross-linking and dual modification on physicochemical, crystallinity, morphological, pasting and thermal characteristics of elephant foot yam (Amorphophalluspaeoniifolius) starch. Food Hydrocoll 55:56–64

    CAS  Google Scholar 

  41. Bourtoom T, Chinnan MS (2008) Preparation and properties of rice starch-chitosan blend biodegradable film. LWT Food Sci Technol 41(9):1633–1641

    CAS  Google Scholar 

  42. Akarsu S, Dolaz M (2019) Synthesis, characterization and application of carboxymethyl potato starch obtained from waste. Cellulose Chem Technol 53:35–45

    CAS  Google Scholar 

  43. Zhao J, Chen Z, Jin Z, Waard P, Buwalda P, Gruppen H, Schols HA (2015) Level and position of substituents in cross-linked and hydroxypropylated sweet potato starches using nuclear magnetic resonance spectroscopy. Carbohyd Polym 131:424–431

    CAS  Google Scholar 

  44. Nilsson GS, Gorton L, Bergquist KE, Nilsson U (1996) Determination of the degree of branching in normal and amylopectin type potato starch with 1H-NMR spectroscopy improved resolution and two-dimensional spectroscopy. Starch-Starke 48(10):352–357

    CAS  Google Scholar 

  45. De Graaf RA, Lammers G, Janssen LPBM, Beenackers AACM (1995) Quantitative analysis of chemically modified starches by 1H-NMR spectroscopy. Starch-Stärke 47(12):469–475

    Google Scholar 

  46. Xu A, Seib PA (1997) Determination of the level and position of substitution in hydroxypropylated starch by high-resolution 1H-NMR spectroscopy of alpha-limit dextrins. J Cereal Sci 25(1):17–26

    CAS  Google Scholar 

  47. Cappai MG, Alesso GA, Nieddu G, Sanna M, Pinna W (2013) Electron microscopy and composition of raw acorn starch in relation to in vivo starch digestibility. Food Funct 4(6):917–922

    CAS  PubMed  Google Scholar 

  48. Yoo SH, Lee CS, Kim BS, Shin M (2012) The properties and molecular structures of gusiljatbam starch compared to those of acorn and chestnut starches. Starch/Stärke 64:339–347

    CAS  Google Scholar 

  49. Stevenson DG, Jane JL, Inglett GE (2006) Physicochemical properties of pin oak (Quercuspalustris Muenchh.) acorn starch. Starch-Stärke 58(11):553–560

    CAS  Google Scholar 

  50. Li Y, Zhang Z, van Leeuwen HP, Cohen Stuart MA, Norde W, Kleijn JM (2011) Uptake and release kinetics of lysozyme in and from an oxidized starch polymer micro gel. Soft Matter 7:10377–10385

    CAS  Google Scholar 

  51. Celikci N, Dolaz M, Colakoglu AS (2020) An environmentally friendly carton adhesive from acidic hydrolysis of waste potato starch. Int J Polym Anal Charact. https://doi.org/10.1080/1023666X.2020.1855047

    Article  Google Scholar 

  52. Avval ME, Moghaddam PN, Fareghi AR (2013) Modification of starch by graft copolymerization: a drug delivery system tested for cephalexin antibiotic. Starch-Starke 65(7–8):572–583

    CAS  Google Scholar 

  53. Granza AG, Travalini AP, Farias FO, Colman TAD, Schnitzler E, Demiate IM (2015) Effects of acetylation and acetylation-hydroxypropylation (dual-modification) on the properties of starch from Carioca bean (Phaseolusvulgaris L.). J Therm Anal Calorim 119(1):769–777

    CAS  Google Scholar 

  54. Colman TAD, Bicudo SCW, Lacerda LG, Carvalho-Filho MAS, Demiate IM, Bannach G, Schnitzler E (2012) Characterization of wheat starch by thermoanalytical, rheological and atomic force microscopy techniques. Braz J Therm Anal 1:62–65

    Google Scholar 

  55. Colman TAD, Demiate IM, Schnitzler E (2014) The effect of microwave radiation on some thermal, rheological and structural properties of cassava starch. J Therm Anal Calorim 115(3):2245–2252

    CAS  Google Scholar 

  56. Andrade MMP, de Oliveira CS, Colman TAD, da Costa FJOG, Schnitzler E (2014) Effects of heat–moisture treatment on organic cassava starc. J Therm Anal Calorim 115(3):2115–2122

    CAS  Google Scholar 

  57. De Oliveira CS, Andrade MMP, Colman TAD, da Costa FJOG, Schnitzler E (2014) Thermal, structural and rheological behaviour of native and modified waxy corn starch with hydrochloric acid at different temperatures. J Therm Anal Calorim 115(1):13–18

    Google Scholar 

  58. Lacerda LG, Colman TAD, Bauab T, Filho SCMA, Demiate IM, de Vasconcelos EC, Schnitzler E (2014) Thermal, structural and rheological properties of starch from avocado seeds (Persea Americana, Miller) modified with standard sodium hypochlorite solutions. J Therm Anal Calorim 115(2):1893–1899

    CAS  Google Scholar 

  59. Da Costa FJOG, Leivas CL, Waszczynskyj N, de Godoi RCB, Helm CV, Colman TAD, Schnitzler E (2013) Characterisation of native starches of seeds of Araucariaangustifolia from four germplasm collections. Thermochim Acta 565:172–177

    Google Scholar 

  60. Hongbo T, Haibo L, Yanping L, Siqing D (2015) Hydroxypropylated microcrystalline pea starch: optimisation, functional characterisation. Int J Food Sci Technol 50(4):1009–1018

    Google Scholar 

  61. Liu H, Ramsden L, Corke H (1999) Physical properties and enzymatic digestibility of hydroxypropylatedae, wx, and normal maize starch. Carbohyd Polym 40(3):175–182

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Kahramanmaras Sutcu Imam University (BAP Project No: 2018/7-11 YLS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Dolaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gönül, G., Celikci, N., Ziba, C.A. et al. Synthesis and Characterization of Hydroxypropyl Acorn Starch (HPAS) From Oak Acorn. J Polym Environ 29, 2289–2301 (2021). https://doi.org/10.1007/s10924-020-02040-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-02040-y

Keywords

Navigation