Skip to main content
Log in

Genome-Wide Identification Analysis of the Auxin Response Factors Family in Nicotiana tabacum and the function of NtARF10 in Leaf Size Regulation

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Auxin is well recognized for its involvement in several developmental processes like floral and leaf development and shoot elongation. The transcriptional regulation of auxin-responsive genes is mediated via auxin response factors (ARF). In this study, we identified 46 ARF genes in Nicotiana tabacum, performed phylogenetic analysis and investigated their structure, conserved domains, and motifs. Our results demonstrate that some of NtARF genes are regulated by mi-RNAs and expression in multiple tobacco tissues. Additionally, the leaf NtARFs display a diverse expression pattern in vein and shoot apical meristem in response to exogenous auxin stimulus. Transgenic NtARF10-overexpressing Arabidopsis plants exhibit larger leave areas, cell area, and more numerous cell numbers compared to wild-type plants and include several upregulated genes involved in cell division and expansion, including AtCYCD3, AtTCP1, AtTCP20, AtXTH33, and AtARGOS. This suggests NtARF10 might play a role in the regulation of leaf size. Our study contributes to a better understanding of the characteristics of the ARF family in tobacco and provides a basis for further functional research into NtARFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ben-Gera H, Dafna A, Alvarez JP, Bar M, Mauerer M, Ori N (2016) Auxin-mediated lamina growth in tomato leaves is restricted by two parallel mechanisms. Plant J 86:443–457

    Article  CAS  PubMed  Google Scholar 

  • Berendzen KW, Weiste C, Wanke D, Kilian J, Harter K, Dröge-Laser W (2012) Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP- and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription. BMC Plant Biol 12:1

    Article  Google Scholar 

  • Busch A, Deckena M, Almeida-Trapp M, Kopischke S, Kock C, Schüssler E, Tsiantis M, Mithöfer A, Zachgo S (2019) MpTCP1 controls cell proliferation and redox processes in Marchantia polymorpha. New Phytol 224:1627–1641

    Article  CAS  PubMed  Google Scholar 

  • Chandler JW (2016) Auxin response factors. Plant Cell Environ 39:1014–1028

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Liu Z, Shi G, Bai Q, Guo C, Xiao K (2018) MIR167a transcriptionally regulates ARF6 and ARF8 and mediates drastically plant Pi-starvation response via modulation of various biological processes. Plant Cell, Tissue Organ Cult 133:177–191

    Article  CAS  Google Scholar 

  • Chen D, Wang W, Wu Y, Xie H, Zhao L, Zeng Q, Zhan Y (2019a) Expression and distribution of the auxin response factors in Sorghum bicolor during development and temperature stress. Int J Mol Sci 20:1–15

    Google Scholar 

  • Chen Y, Hu S, Wang M, Zhao B, Yang N, Li J, Chen Q, Liu M, Zhou J, Bao G, Wu X (2019b) Characterization and establishment of an immortalized rabbit melanocyte cell line using the sv40 large t antigen. Int J Mol Sci 20:1–12

    Google Scholar 

  • Cheng ZJ, Zhao XY, Shao XX, Wang F, Zhou C, Liu YG, Zhang Y, Zhang XS (2014) Abscisic acid regulates early seed development in arabidopsis by ABI5-Mediated transcription of SHORT HYPOCOTYL UNDER BLUE1. Plant Cell 26:1053–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherenkov P, Novikova D, Omelyanchuk N, Levitsky V, Grosse I, Weijers D, Mironova V (2018) Diversity of cis-regulatory elements associated with auxin response in Arabidopsis thaliana. J Exp Bot 69:329–339

    Article  CAS  PubMed  Google Scholar 

  • De Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH (2009) The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J 57:160–170

    Article  PubMed  Google Scholar 

  • Dewitte W, Scofield S, Alcasabas AA, Maughan SC, Menges M, Braun N, Collins C, Nieuwland J, Prinsen E, Sundaresan V, Murray JAH (2007) Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proc Natl Acad Sci 104:14537–14542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Die JV, Gil J, Millan T (2018) Genome-wide identification of the auxin response factor gene family in Cicer arietinum. BMC Genomics 19:1–15

    Article  Google Scholar 

  • Donner TJ, Sherr I, Scarpella E (2009) Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136:3235–3246

    Article  CAS  PubMed  Google Scholar 

  • Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, Allen F, Hurst R, White B, Kernodle SP, Bromley JR, Sanchez-Tamburrino JP, Lewis RS, Mueller LA (2017) A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics 18:1–14

    Article  Google Scholar 

  • Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574

    Article  CAS  PubMed  Google Scholar 

  • Galli M, Khakhar A, Lu Z, Chen Z, Sen S, Joshi T, Nemhauser JL, Schmitz RJ, Gallavotti A (2018) The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. Nat Commun 9:1–14

    Article  CAS  Google Scholar 

  • Goetz M, Hooper LC, Johnson SD, Rodrigues JCM, Vivian-Smith A, Koltunow AM (2007) Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 145:351–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    Article  CAS  PubMed  Google Scholar 

  • Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Sánchez IE, Maruri-López I, Ferrando A, Carbonell J, Graether SP, Jiménez-Bremont JF (2015) Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif. Front Plant Sci 6:1–8

    Article  Google Scholar 

  • Hervé C, Dabos P, Bardet C, Jauneau A, Auriac MC, Ramboer A, Lacout F, Tremousaygue D (2009) In vivo interference with attcp20 function induces severe plant growth alterations and deregulates the expression of many genes important for development. Plant Physiol 149:1462–1477

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Poh HM, Chua NH (2006) The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth. Plant J 47:1–9

    Article  CAS  PubMed  Google Scholar 

  • Israeli A, Capua Y, Shwartz I, Tal L, Meir Z, Levy M, Bar M, Efroni I, Ori N (2019) Multiple auxin-response regulators enable stability and variability in leaf development. Curr Biol 29:1746-1759.e5

    Article  CAS  PubMed  Google Scholar 

  • Kalluri UC, Difazio SP, Brunner AM, Tuskan GA (2007) Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biol 7:1–14

    Article  Google Scholar 

  • Konishi M, Donner TJ, Scarpella E, Yanagisawa S (2015) MONOPTEROS directly activates the auxin-inducible promoter of the Dof5.8 transcription factor gene in Arabidopsis thaliana leaf provascular cells. J Exp Bot 66:283–291

    Article  CAS  PubMed  Google Scholar 

  • Krogan NT, Marcos D, Weiner AI, Berleth T, Washington DC, States U (2016) The auxin response factor MONOPTEROS controls meristem function and organogenesis in both the shoot and root through the direct regulation of PIN genes. New Phytol 212:42–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuluev BR, Knyazev AV, Mikhaylova EV, Ermoshin AA, Nikonorov YM, Chemeris AV (2016) The poplar ARGOS-LIKE gene promotes leaf initiation and cell expansion, and controls organ size. Biol Plant 60:513–522

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushwah S, Banasiak A, Nishikubo N, Derba-Maceluch M, Majda M, Endo S, Kumar V, Gomez L, Gorzsas A, McQueen-Mason S, Braam J, Sundberg B, Mellerowicz EJ (2020) Arabidopsis XTH4 and XTH9 contribute to wood cell expansion and secondary wall formation. Plant Physiol 182:1946–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SB, Xie ZZ, Hu CG, Zhang JZ (2016) A review of auxin response factors (ARFs) in plants. Frontiers Plant Sci 7:1–7

    Google Scholar 

  • Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG (2010) Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot 61:1419–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Dong L, Deng X, Liu D, Liu Y, Li M, Hu Y, Yan Y (2018a) Genome-wide identification, molecular evolution, and expression analysis of auxin response factor (ARF) gene family in Brachypodium distachyon L. BMC Plant Biol 18:1–15

    Article  Google Scholar 

  • Liu S, Zhang Y, Feng Q, Qin L, Pan C, Lamin-Samu AT, Lu G (2018b) Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling. Sci Rep 8:1–16

    Google Scholar 

  • Liu Z, Miao L, Huo R, Song X, Johnson C, Kong L, Sundaresan V, Yu X (2018c) ARF2-ARF4 and ARF5 are essential for female and male gametophyte development in Arabidopsis. Plant Cell Physiol 59:179–189

    Article  CAS  PubMed  Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Dev 140(5):943–950

    Article  CAS  Google Scholar 

  • Luo J, Zhou JJ, Zhang JZ (2018) Aux/IAA gene family in plants: molecular structure, regulation, and function. Int J Mol Sci 19:1–17

    Article  Google Scholar 

  • Niu J, Bi Q, Deng S, Chen H, Yu H, Wang L, Lin S (2018) Identification of AUXIN RESPONSE FACTOR gene family from Prunus sibirica and its expression analysis during mesocarp and kernel development. BMC Plant Biol 18:1–11

    Article  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana. Plant Cell 17:444–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao L, Zhang W, Li X, Zhang L, Zhang X, Li X, Guo H, Ren Y, Zheng J, Chang Z (2018) Characterization and expression patterns of auxin response factors in wheat. Frontiers Plant Sci 9:1–13

    Article  Google Scholar 

  • Roosjen M, Paque S, Weijers D (2018) Auxin response factors: output control in auxin biology. J Exp Bot 69:179–188

    Article  CAS  PubMed  Google Scholar 

  • Sagar M, Chervin C, Roustant JP, Bouzayen M, Zouine M (2013) Under-expression of the Auxin Response Factor SL-ARF4 improves post-harvest behavior of tomato fruits. Plant Signaling and Behavior 8:e25647

    Article  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The Neighbor-joining Method: a New Method for Reconstructing Phylogenetic Trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2006) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133:251–261

    Article  CAS  PubMed  Google Scholar 

  • Schuetz M, Fidanza M, Mattsson J (2019) Identification of auxin response factor-encoding genes expressed in distinct phases of leaf vein development and with overlapping functions in leaf formation. Plants 8:242

    Article  CAS  PubMed Central  Google Scholar 

  • Shen C, Wang S, Bai Y, Wu Y, Zhang S, Chen M, Guilfoyle TJ, Wu P, Qi Y (2010) Functional analysis of the structural domain of ARF proteins in rice (Oryza sativa L.). J Exp Bot 61:3971–3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen C, Yue R, Sun T, Zhang L, Xu L, Tie S, Wang H, Yang Y (2015) Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula. Frontiers in Plant Science 6:1–13

    Article  Google Scholar 

  • Song S, Hao L, Zhao P, Xu Y, Zhong N, Zhang H, Liu N (2019) Genome-wide Identification, Expression Profiling and Evolutionary Analysis of Auxin Response Factor Gene Family in Potato (Solanum tuberosum Group Phureja). Scientific Reports 9:1–13

    Google Scholar 

  • Sun R, Wang S, Ma D, Li Y, Liu C (2019) Genome-wide analysis of cotton auxin early somatic embryogenesis. Genes 10:730

    Article  CAS  PubMed Central  Google Scholar 

  • Tang S, Wang Y, Li Z, Gui Y, Xiao B, Xie J, Zhu QH, Fan L (2012) Identification of wounding and topping responsive small RNAs in tobacco (Nicotiana tabacum). BMC Plant Biol 28:1–15

    Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang R, Mao X, Li L, Chang X, Zhang X, Jing R (2018) TaARF4 genes are linked to root growth and plant height in wheat. Ann Bot 124:903–915

    Article  PubMed Central  Google Scholar 

  • Wang Q, Liu C, Dong Q, Huang D, Li C, Li P, Ma F (2018) Genome-wide identification and analysis of apple NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) genes reveals MdNPF6.5 confers high capacity for nitrogen uptake under low-nitrogen conditions. Int J Mol Sci 19:2761

    Article  PubMed Central  Google Scholar 

  • Wei HB, Cui BM, Ren YL, Li JH, Liao WB, Xu NF, Peng M (2006) Research progresses on auxin response factors. J Integr Plant Biol 48:622–627

    Article  CAS  Google Scholar 

  • Xia F, Sun T, Yang S, Wang X, Chao J, Li X, Hu J, Cui M, Liu G, Wang D, Sun Y (2019) Insight into the b3transcription factor superfamily and expression profiling of B3 genes in axillary buds after topping in tobacco (Nicotiana tabacum L.). Genes 10:164

    Article  CAS  PubMed Central  Google Scholar 

  • Xing H, Pudake RN, Guo G, Xing G, Hu Z, Zhang Y, Sun Q, Ni Z (2011) Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics 12:178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu T, Liu X, Wang R, Dong X, Guan X, Wang Y, Jiang Y, Shi Z, Qi M, Li T (2016) SlARF2a plays a negative role in mediating axillary shoot formation. Sci Rep 6:1–13

    Google Scholar 

  • Yifhar T, Pekker I, Peled D, Friedlander G, Pistunov A, Sabban M, Wachsman G, Alvarez JP, Amsellem Z, Eshed Y (2012) Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN response FACTOR3 and ARF4 underlies the wiry leaf syndrome. Plant Cell 24:3575–3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon EK, Yang JH, Lee WS (2010) Auxin and abscisic acid responses of auxin response factor 3 in arabidopsis lateral root development. J Plant Biol 53:150–154

    Article  CAS  Google Scholar 

  • Yuan Y, Mei L, Wu M, Wei W, Shan W, Gong Z, Zhang Q, Yang F, Yan F, Zhang Q, Luo Y, Xu X, Zhang W, Miao M, Lu W, Li Z, Deng W (2018) SlARF10, an auxin response factor, is involved in chlorophyll and sugar accumulation during tomato fruit development. J Exp Bot 69:5507–5518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Xu X, Gong Z, Tang Y, Wu M, Yan F, Zhang X, Zhang Q, Yang F, Hu X, Yang Q, Luo Y, Mei L, Zhang W, Jiang CZ, Lu W, Li Z, Deng W (2019) Auxin response factor 6A regulates photosynthesis, sugar accumulation, and fruit development in tomato. Horticult Res 6:1–16

    Article  Google Scholar 

  • Zhang J, Li Z, Jin J, Xie X, Zhang H, Chen Q, Luo Z, Yang J (2018) Genome-wide identification and analysis of the growth-regulating factor family in tobacco (Nicotiana tabacum). Gene 639:117–127

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yan F, Tang Y, Yuan Y, Deng W, Li Z (2015) Auxin response gene SlARF3 Plays multiple roles in tomato development and is involved in the formation of epidermal cells and trichomes. Plant Cell Physiol 56:2110–2124

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zeng Z, Chen C, Li C, Xia R (2019) Li J (2019) Genome-wide characterization of the auxin response factor (ARF) gene family of litchi (Litchi chinensis Sonn): Phylogenetic analysis, miRNA regulation and expression changes during fruit abscission. PeerJ 7:e6677

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 2:49–64

    Article  Google Scholar 

  • Zheng H, Li X, Shi L, Jing Y, Song Q, Chen Y, He L, Wang F, Gao J, Bi Y (2019) Genome-wide identification and analysis of the cytochrome b5 protein family in chinese cabbage (Brassica rapa L. ssp. Pekinensis). Int J Genomics 2019:1–12

    Article  Google Scholar 

  • Zouine M, Fu Y, Chateigner-Boutin AL, Mila I, Frasse P, Wang H, Audran C, Roustan JP, Bouzayen M (2014) Characterization of the tomato ARF gene family uncovers a multi-levels post-transcriptional regulation including alternative splicing. PLoS ONE 9:1–12

    Article  Google Scholar 

Download references

Funding

This work was supported by the Central Public-Interest Scientific Institution Basal Research Fund (No. Y2019PT13), the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences (ASTIP-TRIC03), and the Central Public-Interest Scientific Institution Basal Research Fund (No. Y1610232017008).

Author information

Authors and Affiliations

Authors

Contributions

XM and YZ designed and supervised the experiment. JZ, RK, LZ performed the experiments. JZ and RK performed the analysis, wrote the manuscript, and contributed equally to this work. XW and NX helped in carrying out qRT-PCR experiments and contributed with valuable discussions. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Xinghua Ma or Yan Zhang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Khan, R., Zhou, L. et al. Genome-Wide Identification Analysis of the Auxin Response Factors Family in Nicotiana tabacum and the function of NtARF10 in Leaf Size Regulation. J. Plant Biol. 64, 281–297 (2021). https://doi.org/10.1007/s12374-020-09292-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-020-09292-0

Keywords

Navigation