Skip to main content
Log in

Evaluation of interaction between Brachypodium distachyon roots and Fusarium species

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Fusarium Head Blight is the most important disease of cereals worldwide. Studies of interactions between different flower/grain pathogenic Fusarium species have been carried out, using the host and tissue from which the fungus was isolated. The aim of the present study was to assess the root responses of Brachypodium distachyon genotypes to Fusarium spp. to provide information about differences in host resistance and/or fungal aggressiveness. A total of 10 isolates of four Fusarium species were selected: F. graminearum, F. pseudograminearum, F. cerealis, and F. poae. A total of seven genotypes of B. distachyon were used: Afghanistan, Iran, Israel, Pakistan, South Africa, Uruguay and Bd genotype 21. Roots were inoculated and the necrosis root length was measured at 2, 4, 6, and 8 days post-inoculation. The results showed that F. graminearum and F. pseudograminearum were the species with the highest AUDPC values followed by F. cerealis that showed an intermediate value of AUDPC. F. poae was the least aggressive species. Regarding Brachypodium, the least affected genotype was Bd 21 and Pakistan, while the remaining genotypes showed differences in susceptibility. To our knowledge, this is the first report showing interaction between F. pseudograminearum, F. cerealis and F. poae with Brachypodium roots. Moreover, variability in susceptibility among Brachypodium genotypes and in Fusarium species aggressiveness was reported. We concluded that B. distachyon roots offer an efficient tissue system model to evaluate interaction with Fusarium spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abramoff, M. D., Magelhaes, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotonics International, 11, 36–42.

    Google Scholar 

  • Alvarez, C. L., Azcarate, M. P., & Fernandez Pinto, V. (2009). Toxicogenic potential of Fusarium graminearum sensu stricto isolates from wheat in Argentina. International Journal of Food Microbiology, 135, 131–135.

    CAS  PubMed  Google Scholar 

  • Alvarez, C. L., Somma, S., Moretti, A., & Fernandez Pinto, V. (2010). Aggressiveness of Fusarium graminearum sensu stricto isolates in wheat kernels in Argentina. Journal of Phytopathology, 158, 173–181.

    CAS  Google Scholar 

  • Alvarez, C. L., Somma, S., Proctor, R. H., Stea, G., Mulè, G., Logrieco, A. F., Pinto, V. F., & Moretti, A. (2011). Genetic diversity in Fusarium graminearum from a major wheat-producing region of Argentina. Toxins, 3, 1294–1309.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angelotti, F., Tessmann, D. J., Alburquerque, T. C., Vida, J. B., Filho, D. S. J., & Harakava, R. (2006). Caracterização morfológica e identificação molecular de isolados de Fusarium graminearum associados à giberela do trigo e triticale no sul do Brasil. Summa Phytopathologica, 32, 177–179.

    CAS  Google Scholar 

  • Audenaert, K., Van Broeck, R., Bekaert, B., De Witte, F., Heremans, B., Messens, K., Höfte, M., & Haesaert, G. (2009). Fusarium head blight (FHB) in Flanders: Population diversity, inter-species associations and DON contamination in commercial winter wheat varieties. European Journal of Plant Pathology, 125, 445–458.

    Google Scholar 

  • Becher, R., Miedaner, T., & Wirsel, S. G. R. (2013). Biology, diversity, and management of FHB causing Fusarium species in small-grain cereals. Agricultural Applications, 11, 199–241.

    Google Scholar 

  • Blaney, B. J., & Dodman, R. L. (2002). Production of zearalenone, deoxynivalenol, nivalenol, and acetylated derivatives by Australasian isolates of Fusarium graminearum and F. pseudograminearum in relation to source and culturing conditions. Australasian Journal of Agricultural Research, 53, 1317–1326.

  • Blümke, A., Sode, B., Ellinger, D., & Voigt, C. A. (2015). Reduced susceptibility to Fusarium head blight in Brachypodium distachyon through priming with the Fusarium mycotoxin deoxynivalenol. Molecular Plant Pathology, 16, 472–483.

    PubMed  Google Scholar 

  • Campbell, C. L., & Madden, L. V. (1990). Introduction to plant disease epidemiology. New York: Wiley.

    Google Scholar 

  • Castañares, E., Wehrhahne, L., & Stenglein, S. A. (2012). Fusarium pseudograminearum associated with barley kernels in Argentina. Plant Disease, 96, 763.

    PubMed  Google Scholar 

  • Castañares, E., Dinolfo, M. I., Moreno, M. V., Berón, C., & Stenglein, S. A. (2013). Fusarium cerealis associated with barley seeds in Argentina. Journal of Phytopathology, 161, 586–589.

    Google Scholar 

  • Castañares, E., Dinolfo, M. I., Del Ponte, E. M., Pan, D., & Stenglein, S. A. (2016). Species composition and genetic structure of Fusarium graminearum species complex populations affecting the main barley growing regions of South America. Plant Pathology, 65, 930–939.

    Google Scholar 

  • Chandler, E., Simpson, D., Thomsett, M., & Nicholson, P. (2003). Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterization of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiological and Molecular Plant Pathology, 62, 355–367.

    CAS  Google Scholar 

  • Chochois, V., Vogel, J. P., & Watt, M. (2012). Application of Brachypodium to the genetic improvement of wheat roots. Journal of Experimental Botany, 63, 3467–3474.

    CAS  PubMed  Google Scholar 

  • Covarelli, L., Beccari, G., Prodi, A., Generotti, S., Etruschi, F., Juan, C., Ferrer, E., & Manes, J. (2015). Fusarium species, chemotype characterization and trichothecene contamination of durum and soft wheat in an area of Central Italy. Journal of Science of Food and Agriculture, 95, 540–551.

    CAS  Google Scholar 

  • Dangl, J. L. (1993). Application of Arabidopsis thaliana to outstanding issues in plant–pathogen interactions. International Review Cytology, 144, 53–83.

    Google Scholar 

  • Desmond, O. J., Edgar, C. I., Manners, J. M., Maclean, D. J., Schenck, P. M., & Kazan, K. (2006). Methyl jasmonate induced gene expression in wheat delays symptom development by the crown rot pathogen Fusarium psedograminearum. Physiological and Molecular Plant Pathology, 67, 171–179.

    Google Scholar 

  • Dinolfo, M. I., Castañares, E., & Stenglein, S. A. (2017). Fusarium–plant interaction: State of the art – A review. Plant Protection Science, 53, 61–70.

    CAS  Google Scholar 

  • Draper, J., Mur, L. A. J., Jenkins, G., Ghosh-Biswas, G. C., Bablak, P., Hasterok, R., & Routledge, A. P. M. (2001). Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiology, 127, 1539–1555.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gargouri, S., Mtat, I., Kammoun, L. G., Zid, M., & Hajlaoui, R. (2011). Molecular genetic diversity in populations of Fusarium pseudograminearum from Tunisia. Journal of Phytopathology, 159, 306–313.

    Google Scholar 

  • Goddard, R., Peraldi, A., Ridout, C., & Nicholson, P. (2014). Enhanced disease resistance caused by BRI1 mutation is conserved between Brachypodium distachyon and barley (Hordeum vulgare). Molecular Plant Microbe Interactions, 27, 1095–1106.

    CAS  PubMed  Google Scholar 

  • Goswani, R. S., & Kistler, H. C. (2005). Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology, 95, 1397–1404.

    Google Scholar 

  • Hofgaard, I. S., Aamot, H. U., Torp, T., Jestoi, M., Lattanzio, V. M. T., Klemsdal, S. S., Waalwijk, C., Van der Lee, T., & Brodal, G. (2016). Association between Fusarium species and mycotoxins in oats and spring wheat from farmers field in Norway over a six year period. World Mycotoxin Journal, 9, 365–378.

    CAS  Google Scholar 

  • Jestoi, M., Rokka, M., Yli-Mattila, T., Parikka, P., Rizzo, A., & Peltonen, K. (2004). Presence and concentrations of the Fusarium-related mycotoxins beauvericin, enniatins and moniliformin in Finnish grain sample. Food Additives & Contaminants A, 21, 794–802.

    CAS  Google Scholar 

  • Kind, S., Schurack, S., Hinsch, J., & Tudzynski, P. (2017). Brachypodium distachyon as an alternative model host system for the ergot fungus Claviceps purpurea. Molecular Plant Pathology, 19, 1005–1011.

    PubMed  PubMed Central  Google Scholar 

  • Lamprecht, S. C., Marasas, W. F. O., Hardy, M. B., & Calitz, F. J. (2006). Effect of crop rotation on crown rot and the incidence of Fusarium pseudograminearum in wheat in the Western cape, South Africa. Australasian Plant Pathology, 35, 419–426.

    Google Scholar 

  • Logrieco, A., Bottalico, A., Mule, G., Moretti, A., & Perrone, G. (2003). Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. European Journal of Plant Pathology, 109, 645–667.

    CAS  Google Scholar 

  • Malbrán, I., Mourelos, C. A., Girotti, J. R., Aulicino, M. B., Balatti, P. A., & Lori, G. A. (2012). Agressiveness variation of Fusarium graminearum isolates from Argentina following point inoculation of field grown wheat spikes. Crop Protection, 42, 234–243.

    Google Scholar 

  • Malbrán, I., Mourelos, C. A., Girotti, J. R., Balatti, P. A., & Lori, G. A. (2014). Toxicogenic capacity and trichothecene production by Fusarium graminearum isolates from Argentina and their relationship with aggressiveness and fungal expansion in the wheat spike. Phytopathology, 104, 357–364.

    PubMed  Google Scholar 

  • Manning, B., Southwell, R., Hayman, P., & Moore, K. (2000). Fusarium head blight in northern NSW. New South Wales: NSW Agriculture Research Update.

    Google Scholar 

  • Mesterházy, A. (2002). Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight. European Journal of Plant Pathology, 108, 675–684.

  • Mesterházy, A., Bartók, T., Mirocha, C. M., & Komoróczy, R. (1999). Nature of resistance of wheat to Fusarium head blight and deoxynivalenol contamination and their consequences for breeding. Plant Breeding, 118, 97–110.

  • Miedaner, T., Reinbrecht, C., & Schilling, A. G. (2000). Association among aggressiveness, fungal colonization, and mycotoxin production of 26 isolates of Fusarium graminearum in winter rye head blight. Journal of Plant Diseases and Protection, 107, 124–134.

    CAS  Google Scholar 

  • Monds, R. D., Cromey, M. G., Lauren, D. R., di Menna, M., & Marshall, J. (2005). F. graminearum, F. cortaderiae and F. pseudograminearum in New Zealand: Molecular phylogenetic analysis, mycotoxin chemotypes and co-existence of species. Mycological Research, 109, 410–420.

    CAS  PubMed  Google Scholar 

  • Nicholson, P., Simpson, D. R., Weston, G., Rezanoor, H. N., Lees, A. K., Parry, D. W., & Joyce, D. (1998). Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals by using PCR assays. Physiological and Molecular Plant Pathology, 53, 17–37.

    CAS  Google Scholar 

  • Nogueira, M. S., Decundo, J., Martínez, M., Dieguez, S. N., Moreyra, F., Moreno, M. V., & Stenglein, S. A. (2018). Natural contamination with mycotoxins produced by Fusarium graminearum and Fusarium poae in malting barley in Argentina. Toxins, 10, 78.

  • Parry, D. W., & Nicholson, P. (1996). Development of a PCR assay to detect Fusarium poae in wheat. Plant Pathology, 45, 383–391.

    CAS  Google Scholar 

  • Pasquet, J. C., Chaouch, S., Macadré, C., Balzergue, S., Huguet, S., Martin-Magniette, M. L., Bellvert, F., Deguercy, X., Thareau, V., Heinzt, D., Saindrenan, P., & Dufresne, M. (2014). Differential gene expression and metabolomic analyses of Brachypodium distachyon infected by deoxynivalenol producing and non-producing strains of Fusarium graminearum. BMC Genomics, 15, 629.

    PubMed  PubMed Central  Google Scholar 

  • Pasquet, J. C., Changenet, V., Macadré, C., Boex-Fontvieille, E., Soulhats, C., Bouchabké-Coussa, O., Dalmais, M., Atanasova-Pénichon, V., Bendahmane, A., Saindrenan, P., & Dufresne, M. (2016). A Brachypodium UDP-glycosyltransferase confers root tolerance to deoxynivalenol and resistance to Fusarium infection. Plant Physiology, 172, 559–574.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peraldi, A., Beccari, G., Steed, A., & Nicholson, P. (2011). Brachypodium distachyon: A new pathosystem to study Fusarium head blight and other Fusarium diseases on wheat. BMC Plant Biology, 11, 100.

    PubMed  PubMed Central  Google Scholar 

  • Peraldi, A., Griffe, L. L., Burt, C., McGrann, G. R. D., & Nicholson, P. (2014). Brachypodium distachyon exhibits compatible interactions with Oculimacula spp. and Ramularia collo-cygni, providing the first pathosystem model to study eyespot and ramularia leaf spot diseases. Plant Pathology, 63, 554–562.

    CAS  PubMed  Google Scholar 

  • Purahong, W., Alkadri, D., Nipoti, P., Pisi, A., Lemmens, M., & Prodi, A. (2012). Validation of a modified petri-dish test to quantify aggressiveness of Fusarium graminearum in durum wheat. European Journal of Plant Pathology, 132, 381–391.

    Google Scholar 

  • R Core Team. (2017). R: A language and environment for statistical computing. In R Foundation for statistical computing. Vienna: Austria. URL https://www.R-project.org/.

    Google Scholar 

  • Reynoso, M. M., Ramirez, M. L., Torres, A. M., & Chulze, S. M. (2011). Trichothecene genotypes and chemotypes in Fusarium graminearum strains isolated from wheat in Argentina. International Journal of Food Microbiology, 145, 444–448.

    CAS  PubMed  Google Scholar 

  • Rotter, B., Prelusky, D. B., & Petska, J. J. (1996). Toxicology of deoxynivalenol (vomitoxin). Journal of Toxicology and Environmental Health, 48, 1–34.

    CAS  PubMed  Google Scholar 

  • Schmale, D. G., Wood-Jones, A. K., Cowger, C., Bergstrom, G. C., & Arellano, C. (2011). Trichothecene genotypes of Gibberella zeae from winter wheat fields in the eastern USA. Plant Pathology, 60, 909–917.

    CAS  Google Scholar 

  • Schneebeli, K., Mathesius, U., & Watt, M. (2015). Brachypodium distachyon is a pathosystem model for the study of the wheat disease rhizoctonia root rot. Plant Pathology, 64, 91–100.

    Google Scholar 

  • Schöneberg, T., Kastelein, C., Wettstein, F. E., Bucheli, T. D., Mascher, F., Bertossa, M., Musa, T., Keller, B., & Vogelgsang, S. (2016). Fusarium and mycotoxin spectra in Swiss barley are affected by various cropping techniques. Food Additives & Contaminants A, 33, 1608–1619.

    Google Scholar 

  • Spanic, V., Lemmens, M., & Drazner, G. (2010). Morphological and molecular identification of Fusarium species associated with head blight on wheat in East Croatia. European Journal of Plant Pathology, 128, 511–516.

    Google Scholar 

  • Sugiura, Y., Fukasaku, K., Tanaka, T., Matsui, Y., & Ueno, Y. (1993). Fusarium poae and Fusairium crockwellense, fungi responsible for the natural occurrence of nivalenol in Hokkaido. Applied and Environmental Microbiology, 59, 3334–3338.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umpierrez-Failache, M., Garmendia, G., Pereyra, S., Rodriguez Haralambides, A., Ward, T. J., & Vero, S. (2013). Regional differences in species composition and toxigenic potential among Fusarium head blight isolates from Uruguay indicate a risk of nivalenol contamination in new wheat production areas. International Journal of Food Microbiology, 166, 135–140.

    CAS  PubMed  Google Scholar 

  • Urban, M., Daniels, S., Mott, E., & Hammond-Kosack, K. (2002). Arabidopsis is susceptible to the cereal ear blight fungal pathogens Fusarium graminearum and Fusarium culmorum. Plant Journal, 32, 961–973.

  • Vogel, J. P., Garvin, D. F., Mockler, T. C., Schmutz, J., Rokhsar, D., & Bevan, M. W. (2010). Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 463, 763–768.

    CAS  Google Scholar 

  • Waalwijk, C., Kastelein, P., de Vries, I., Kerényi, Z., van der Lee, T., Hesselink, T., Köhl, J., & Lema, G. (2003). Major changes in Fusarium spp. in wheat in the Netherlands. European Journal of Plant Pathology, 109, 743–754.

    CAS  Google Scholar 

  • Williams, K. J., Dennis, J. I., Smyl, C., & Wallwork, H. (2002). The application of sepecies-specific assays based on the polymerase chain reaction to analyse Fusarium crown rot of durum wheat. Australasian Plant Pathology, 31, 119–127.

    Google Scholar 

  • Yoder, W. T., & Christianson, L. M. (1998). Species-specific primers resolve members of Fusarium section Fusarium. Taxonomic status of the edible “Quorn” fungus reevaluated. Fungal Genetics and Biology, 23, 68–80.

  • Zhong, S., Ali, S., Leng, Y., Wang, R., & Garvin, D. F. (2015). Brachypodium distachyon-Cochliobolus sativus pathosystem is a new model for studying plant-pathogen interactions in cereal crops. Phytopathology, 105, 482–489.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by FONCYT-SECYT PICT 213/2015 and UNCPBA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián A. Stenglein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

No human and/or animal participants were involved in this research.

Informed consent

All authors consent to this submission.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinolfo, M.I., Martínez, M., Nogueira, M.S. et al. Evaluation of interaction between Brachypodium distachyon roots and Fusarium species. Eur J Plant Pathol 159, 269–278 (2021). https://doi.org/10.1007/s10658-020-02159-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02159-7

Keywords

Navigation