Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

The land–energy–water nexus of global bioenergy potentials from abandoned cropland

Abstract

Bioenergy is a key option in climate change mitigation scenarios. Growing perennial grasses on recently abandoned cropland is a near-term strategy for gradual bioenergy deployment with reduced risks for food security and the environment. However, the extent of global abandoned cropland, bioenergy potentials and management requirements are unclear. Here we integrate satellite-derived land cover maps with a yield model to investigate the land–energy–water nexus of global bioenergy potentials. We identified 83 million hectares of abandoned cropland between 1992 and 2015, corresponding to 5% of today’s cropland area. Bioenergy potentials are 6–39 exajoules per year (11–68% of today’s bioenergy demand), depending on multiple local and management factors. About 20 exajoules per year can be achieved by increasing today’s global cropland area and water use by 3% and 8%, respectively, and without production inside biodiversity hotspots or irrigation in water-scarce areas. The consideration of context-specific practices and multiple environmental dimensions can mitigate trade-offs of bioenergy deployment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global abandoned cropland between 1992 and 2015 as fraction of grid cell.
Fig. 2: Global bioenergy potentials on abandoned cropland.
Fig. 3: Bioenergy potentials (EJ yr−1) on abandoned cropland for present-day climatic conditions and a set of different assumptions regarding water supply, agricultural management intensity level and land availability.
Fig. 4: Present-day productivity distribution of global abandoned cropland (Mha) and optimal crop allocation as a function of bioenergy yields (GJ ha−1 yr−1) for different management intensities and water supply systems.
Fig. 5: Irrigation effects on bioenergy potentials and key water requirement indicators under two alternative agricultural management intensities and water scarcity levels.

Similar content being viewed by others

Data availability

Datasets used in this analysis are publicly available from the references provided within the paper. Other data supporting the findings of this study are available from the corresponding author on reasonable request. Source data are provided with this paper.

Code availability

Custom code used in this analyses is available at https://github.com/janjsn/lew_nexus_ac_bioenergy.

References

  1. Rogelj, J. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 2 (WMO, 2018).

  2. Energy Technology Perspectives 2017: Catalysing Energy Technology Transformations (IEA, 2017).

  3. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  4. Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).

    Article  CAS  Google Scholar 

  5. IPCC: Summary for Policymakers. In Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (IPCC, 2019).

  6. Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7, 916–944 (2015).

    Article  CAS  Google Scholar 

  7. Campbell, J. E., Lobell, D. B., Genova, R. C. & Field, C. B. The global potential of bioenergy on abandonded agricultural lands. Environ. Sci. Technol. 42, 5791–5794 (2008).

    Article  CAS  Google Scholar 

  8. Robertson, G. P. et al. Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes. Science 356, eaal2324 (2017).

    Article  Google Scholar 

  9. Muri, H. The role of large-scale BECCS in the pursuit of the 1.5 °C target: an Earth system model perspective. Environ. Res. Lett. 13, 44010 (2018).

    Article  Google Scholar 

  10. Daioglou, V., Doelman, J. C., Wicke, B., Faaij, A. & van Vuuren, D. P. Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Glob. Environ. Change 54, 88–101 (2019).

    Article  Google Scholar 

  11. Lasanta, T. et al. Space–time process and drivers of land abandonment in Europe. CATENA 149, 810–823 (2017).

    Article  Google Scholar 

  12. Li, S. & Li, X. Global understanding of farmland abandonment: a review and prospects. J. Geogr. Sci. 27, 1123–1150 (2017).

    Article  Google Scholar 

  13. Jepsen, M. R. et al. Transitions in European land-management regimes between 1800 and 2010. Land Use Policy 49, 53–64 (2015).

    Article  Google Scholar 

  14. Qin, Z., Dunn, J. B., Kwon, H., Mueller, S. & Wander, M. M. Soil carbon sequestration and land use change associated with biofuel production: empirical evidence. GCB Bioenergy 8, 66–80 (2016).

    Article  CAS  Google Scholar 

  15. Dou, F. G. et al. Soil organic carbon pools under switchgrass grown as a bioenergy crop compared to other conventional crops. Pedosphere 23, 409–416 (2013).

    Article  CAS  Google Scholar 

  16. Liu, W., Yan, J., Li, J. & Sang, T. Yield potential of Miscanthus energy crops in the Loess Plateau of China. GCB Bioenergy 4, 545–554 (2012).

    Article  Google Scholar 

  17. Englund, O. et al. Beneficial land use change: strategic expansion of new biomass plantations can reduce environmental impacts from EU agriculture. Glob. Environ. Change 60, 101990 (2020).

    Article  Google Scholar 

  18. Yang, Y., Tilman, D., Lehman, C. & Trost, J. J. Sustainable intensification of high-diversity biomass production for optimal biofuel benefits. Nat. Sustain. 1, 686–692 (2018).

    Article  Google Scholar 

  19. Georgescu, M., Lobell, D. B. & Field, C. B. Direct climate effects of perennial bioenergy crops in the United States. Proc. Natl Acad. Sci. USA 108, 4307–4312 (2011).

    Article  CAS  Google Scholar 

  20. Harding, K. J., Twine, T. E., VanLoocke, A., Bagley, J. E. & Hill, J. Impacts of second-generation biofuel feedstock production in the central US on the hydrologic cycle and global warming mitigation potential. Geophys. Res. Lett. 43, 10,773–10,781 (2016).

    Article  Google Scholar 

  21. Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1027 (1999).

    Article  CAS  Google Scholar 

  22. Field, C. B., Campbell, J. E. & Lobell, D. B. Biomass energy: the scale of the potential resource. Trends Ecol. Evol. 23, 65–72 (2008).

    Article  Google Scholar 

  23. Cai, X., Zhang, X. & Wang, D. Land availability analysis for biofuel production. Environ. Sci. Technol. 45, 334–339 (2011).

    Article  CAS  Google Scholar 

  24. Li, S. et al. An estimation of the extent of cropland abandonment in mountainous regions of China. Land Degrad. Dev. 29, 1327–1342 (2018).

    Article  Google Scholar 

  25. Poulter, B. et al. Plant functional type classification for Earth system models: results from the European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 8, 2315–2328 (2015).

    Article  Google Scholar 

  26. Boysen, L. R., Lucht, W. & Gerten, D. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential. Glob. Change Biol. 23, 4303–4317 (2017).

    Article  Google Scholar 

  27. Slade, R., Bauen, A. & Gross, R. Global bioenergy resources. Nat. Clim. Change 4, 99–105 (2014).

    Article  Google Scholar 

  28. Beringer, T., Lucht, W. & Schaphoff, S. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy 3, 299–312 (2011).

    Article  CAS  Google Scholar 

  29. Jans, Y., Berndes, G., Heinke, J., Lucht, W. & Gerten, D. Biomass production in plantations: land constraints increase dependency on irrigation water. GCB Bioenergy 10, 628–644 (2018).

    Article  CAS  Google Scholar 

  30. Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).

    Article  Google Scholar 

  31. Liu, J. et al. Nexus approaches to global sustainable development. Nat. Sustain. 1, 466–476 (2018).

    Article  Google Scholar 

  32. Bleischwitz, R. et al. Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nat. Sustain. 1, 737–743 (2018).

    Article  Google Scholar 

  33. Defourny, P. et al. Land Cover CCI Product User Guide v.2.0 (ESA, 2017).

  34. Fischer, G. et al. Global Agro-ecological Zones (GAEZ v.3. 0) – Model Documentation (IIASA/FAO, 2012).

  35. Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 3, 281–289 (2020).

    Article  Google Scholar 

  36. Alcantara, C. et al. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environ. Res. Lett. 8, 35035 (2013).

    Article  Google Scholar 

  37. Ustaoglu, E. & Collier, M. J. Farmland abandonment in Europe: an overview of drivers, consequences, and assessment of the sustainability implications. Environ. Rev. 26, 396–416 (2018).

    Article  Google Scholar 

  38. Estel, S. et al. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 163, 312–325 (2015).

    Article  Google Scholar 

  39. Schierhorn, F. et al. Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Glob. Biogeochem. Cycles 27, 1175–1185 (2013).

    Article  CAS  Google Scholar 

  40. Pérez-Hoyos, A., Rembold, F., Kerdiles, H. & Gallego, J. Comparison of global land cover datasets for cropland monitoring. Remote Sens. 9, 1118 (2017).

    Article  Google Scholar 

  41. FAOSTAT Database (FAO, 2020); http://www.fao.org/faostat/en

  42. Gennari, P., Rosero-Moncayo, J. & Tubiello, F. N. The FAO contribution to monitoring SDGs for food and agriculture. Nat. Plants 5, 1196–1197 (2019).

    Article  Google Scholar 

  43. Thomson, A. M. et al. RCP 4.5: a pathway for stabilization of radiative forcing by 2100. Clim. Change 109, 77–94 (2011).

    Article  CAS  Google Scholar 

  44. Riahi, K. et al. RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57 (2011).

    Article  CAS  Google Scholar 

  45. FAO The State of the World’s Land and Water Resources for Food and Agriculture: Managing Systems at Risk (Earthscan, 2011).

  46. Peters, G. P. The ‘best available science’ to inform 1.5 °C policy choices. Nat. Clim. Change 6, 646–649 (2016).

    Article  Google Scholar 

  47. Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–183 (2016).

    Article  CAS  Google Scholar 

  48. Vaughan, N. E. & Gough, C. Expert assessment concludes negative emissions scenarios may not deliver. Environ. Res. Lett. 11, 95003 (2016).

    Article  Google Scholar 

  49. Field, J. L. et al. Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proc. Natl Acad. Sci. USA 117, 21968–21977 (2020).

    Article  CAS  Google Scholar 

  50. Oakleaf, J. R. et al. Mapping global development potential for renewable energy, fossil fuels, mining and agriculture sectors. Sci. Data 6, 101 (2019).

    Article  Google Scholar 

  51. Li, W. et al. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data 10, 219–234 (2018).

    Article  Google Scholar 

  52. Liu, X. et al. Identifying patterns and hotspots of global land cover transitions using the ESA CCI Land Cover dataset. Remote Sens. Lett. 7058, 972–981 (2018).

    Article  Google Scholar 

  53. Liu, X. et al. Comparison of country-level cropland areas between ESA-CCI land cover maps and FAOSTAT data. Int. J. Remote Sens. 1161, 1–15 (2018).

    Google Scholar 

  54. Hu, X., Huang, B., Verones, F., Cavalett, O. & Cherubini, F. Overview of recent land‐cover changes in biodiversity hotspots. Front. Ecol. Environ. https://doi.org/10.1002/fee.2276 (2020).

  55. Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9, 679 (2018).

    Article  Google Scholar 

  56. Huang, B. et al. Predominant regional biophysical cooling from recent land cover changes in Europe. Nat. Commun. 11, 1066 (2020).

    Article  CAS  Google Scholar 

  57. Product Quality Assessment Report IDCR Land Cover 2016 and 2017 (UCLouvain, 2019).

  58. Tsendbazar, N. E., de Bruin, S., Mora, B., Schouten, L. & Herold, M. Comparative assessment of thematic accuracy of GLC maps for specific applications using existing reference data. Int. J. Appl. Earth Obs. Geoinf. 44, 124–135 (2016).

    Google Scholar 

  59. Liu, H. et al. Annual dynamics of global land cover and its long-term changes from 1982 to 2015. Earth Syst. Sci. Data 12, 1217–1243 (2020).

    Article  Google Scholar 

  60. Liang, L., Liu, Q., Liu, G., Li, H. & Huang, C. Accuracy evaluation and consistency analysis of four global land cover products in the Arctic region. Remote Sens. 11, 1396 (2019).

    Article  Google Scholar 

  61. Yang, Y., Xiao, P., Feng, X. & Li, H. Accuracy assessment of seven global land cover datasets over China. ISPRS J. Photogramm. Remote Sens. 125, 156–173 (2017).

    Article  Google Scholar 

  62. Hou, W. & Hou, X. Data fusion and accuracy analysis of multi-source land use/land cover datasets along coastal areas of the Maritime Silk Road. ISPRS Int. J. Geoinf. 8, 557 (2019).

    Article  Google Scholar 

  63. Madhusoodhanan, C. G., Sreeja, K. G. & Eldho, T. I. Assessment of uncertainties in global land cover products for hydro‐climate modeling in India. Water Resour. Res. 53, 1713–1734 (2017).

    Article  Google Scholar 

  64. Karvonen, V., Ribard, C., Sädekoski, N., Tyystjärvi, V. & Muukkonen, P. in Creating, Managing, and Analysing Geospatial Data and Databases in Geographical Themes (eds Tyystjärvi, V. & Muukkonen, P.) 26–45 (Univ. of Helsinki, 2018).

  65. Fonte, C. C., See, L., Lesiv, M. & Fritz, S. A preliminary quality analysis of the climate change initiative land cover products for continental Portugal. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 42, 1213–1220 (2019).

    Article  Google Scholar 

  66. Schmunk, R. Panoply netCDF Visualization Software v.1.5.1 (NASA, 2020).

  67. Gridded Population of the World, Version 4 (GPWv4): National Identifier Grid (Center for International Earth Science Information Network – CIESIN, Columbia University & Centro Internacional de Agricultura Tropical – CIAT, 2016); https://doi.org/10.7927/H4TD9VDP

  68. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article  CAS  Google Scholar 

  69. Tracewski, Ł. et al. Toward quantification of the impact of 21st-century deforestation on the extinction risk of terrestrial vertebrates. Conserv. Biol. 30, 1070–1079 (2016).

    Article  Google Scholar 

  70. Hoffman, M., Koenig, K., Bunting, G., Costanza, J. & Williams, K. J. Biodiversity Hotspots (v.2016.1) (2016); https://doi.org/10.5281/zenodo.3261807

  71. Liu, J. et al. Water scarcity assessments in the past, present, and future. Earth’s Future 5, 545–559 (2017).

    Article  Google Scholar 

  72. Brown, A. & Matlock, M. D. A Review of Water Scarcity Indices and Methodologies (Sustainability Consortium, 2011).

  73. Seckler, D. W., Amarasinghe, U., Molden, D., de Silva, R. & Barker, R. World Water Demand and Supply, 1990 to 2025: Scenarios and Issues (International Water Management Institute, 1998).

  74. Rijsberman, F. R. Water scarcity: fact or fiction? Agric. Water Manag. 80, 5–22 (2006).

    Article  Google Scholar 

  75. Aquamaps. Global Spatial Database on Water and Agriculture (FAO, 2010); https://data.apps.fao.org/aquamaps/

  76. Lewandowski, I., Scurlock, J. M. O., Lindvall, E. & Christou, M. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25, 335–361 (2003).

    Article  Google Scholar 

  77. Lewandowski, I., Clifton-Brown, J. C., Scurlock, J. M. O. & Huisman, W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19, 209–227 (2000).

    Article  CAS  Google Scholar 

  78. Naidu, S. L., Moose, S. P., AL-Shoaibi, A. K., Raines, C. A. & Long, S. P. Cold tolerance of C4 photosynthesis in Miscanthus × giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol. 132, 1688–1697 (2003).

    Article  CAS  Google Scholar 

  79. Farage, P. K., Blowers, D., Long, S. P. & Baker, N. R. Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L. and Miscanthus × giganteus. Plant. Cell Environ. 29, 720–728 (2006).

    Article  CAS  Google Scholar 

  80. Chung, J. & Kim, D. Miscanthus as a potential bioenergy crop in East Asia. J. Crop Sci. Biotechnol. 2012, 65–77 (2012).

    Article  Google Scholar 

  81. Clifton-Brown, J. et al. Thermal requirements for seed germination in Miscanthus compared with switchgrass (Panicum virgatum), reed canary grass (Phalaris arundinaceae), maize (Zea mays) and perennial ryegrass (Lolium perenne). GCB Bioenergy 3, 375–386 (2011).

    Article  Google Scholar 

  82. Heaton, E. A., Dohleman, F. G. & Long, S. P. Seasonal nitrogen dynamics of Miscanthus × giganteus and Panicum virgatum. GCB Bioenergy 1, 297–307 (2009).

    Article  CAS  Google Scholar 

  83. Dopazo, R., Vega-Nieva, D. & Ortiz, L. Herbaceous Energy Crops: Reviewing Their Productivity for Bioenergy Production (2010).

  84. VanLoocke, A., Twine, T. E., Zeri, M. & Bernacchi, C. J. A regional comparison of water use efficiency for miscanthus, switchgrass and maize. Agric. For. Meteorol. 164, 82–95 (2012).

    Article  Google Scholar 

  85. Usťak, S., Šinko, J. & Muňoz, J. Reed canary grass (Phalaris arundinacea L.) as a promising energy crop. J. Cent. Eur. Agric. 20, 1143–1168 (2019).

    Article  Google Scholar 

  86. Laurent, A., Pelzer, E., Loyce, C. & Makowski, D. Ranking yields of energy crops: a meta-analysis using direct and indirect comparisons. Renew. Sust. Energ. Rev. 46, 41–50 (2015).

    Article  Google Scholar 

  87. Miller, R. C. & Zedler, J. B. Responses of native and invasive wetland plants to hydroperiod and water depth. Plant Ecol. 167, 57–69 (2003).

    Article  Google Scholar 

  88. Mohapatra, S., Mishra, C., Behera, S. S. & Thatoi, H. Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass – a review. Renew. Sust. Energ. Rev. 78, 1007–1032 (2017).

    Article  CAS  Google Scholar 

  89. Ge, Z. M. et al. Acclimation of photosynthesis in a boreal grass (Phalaris arundinacea L.) under different temperature, CO2, and soil water regimes. Photosynthetica 50, 141–151 (2012).

    Article  CAS  Google Scholar 

  90. Lind, S. E. et al. Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil. Biogeosciences 12, 16673–16708 (2016).

    Google Scholar 

  91. Cooney, D. et al. Switchgrass as a bioenergy crop in the Loess Plateau, China: potential lignocellulosic feedstock production and environmental conservation. J. Integr. Agric. 16, 1211–1226 (2017).

    Article  Google Scholar 

  92. Casler, M. D., Mitchell, R. B. & Vogel, K. P. in Handbook of Bioenergy Crop Plants (eds Kole, C. et al.) 563–590 (Routledge, 2012).

  93. Hui, D. et al. Effects of precipitation changes on switchgrass photosynthesis, growth, and biomass: a mesocosm experiment. PLoS ONE 13, e0192555 (2018).

    Article  Google Scholar 

  94. Deng, Q. et al. Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field. Agric. Ecosyst. Environ. 248, 29–37 (2017).

    Article  Google Scholar 

  95. Barney, J. N. & DiTomaso, J. M. Bioclimatic predictions of habitat suitability for the biofuel switchgrass in North America under current and future climate scenarios. Biomass Bioenergy 34, 124–133 (2010).

    Article  Google Scholar 

  96. Deng, N. et al. Closing yield gaps for rice self-sufficiency in China. Nat. Commun. 10, 1725 (2019).

    Article  Google Scholar 

  97. Mauser, W. et al. Global biomass production potentials exceed expected future demand without the need for cropland expansion. Nat. Commun. 6, 8946 (2015).

    Article  CAS  Google Scholar 

  98. Davis, K. F., Rulli, M. C., Seveso, A. & D’Odorico, P. Increased food production and reduced water use through optimized crop distribution. Nat. Geosci. 10, 919–924 (2017).

    Article  CAS  Google Scholar 

  99. Staples, M. D. et al. Water consumption footprint and land requirements of large-scale alternative diesel and jet fuel production. Environ. Sci. Technol. 47, 12557–12565 (2013).

    Article  CAS  Google Scholar 

  100. Hayashi, A., Akimoto, K., Homma, T., Wada, K. & Tomoda, T. Change in the annual water withdrawal-to-availability ratio and its major causes: an evaluation for Asian river basins under socioeconomic development and climate change scenarios. Energy Environ. Res. 4, 34 (2014).

    Article  Google Scholar 

  101. Kang, S., Selosse, S. & Maïzi, N. Contribution of global GHG reduction pledges to bioenergy expansion. Biomass Bioenergy 111, 142–153 (2018).

    Article  Google Scholar 

  102. Staples, M. D., Malina, R. & Barrett, S. R. H. The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nat. Energy 2, 16202 (2017).

    Article  CAS  Google Scholar 

  103. Staples, M. D., Malina, R., Suresh, P., Hileman, J. I. & Barrett, S. R. H. Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy 114, 342–354 (2018).

    Article  CAS  Google Scholar 

  104. Potter, P., Ramankutty, N., Bennett, E. M. & Donner, S. D. Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact. 14, 1–22 (2010).

    Article  Google Scholar 

  105. Maggi, F., Tang, F. H. M., la Cecilia, D. & McBratney, A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data 6, 170 (2019).

  106. Phyllis2 Database for (treated) Biomass, Algae, Feedstocks for Biogas Production and Biochar (ECN.TNO, 2019); https://phyllis.nl/

  107. Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (Cambridge Univ. Press, 2013).

  108. Hausfather, Z. & Peters, G. Emissions – the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).

    Article  CAS  Google Scholar 

  109. van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).

    Article  Google Scholar 

  110. Kharin, V. V., Zwiers, F. W., Zhang, X. & Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Change 119, 345–357 (2013).

    Article  Google Scholar 

  111. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. and Meyer, L. A.) (IPCC, 2014).

  112. Pope, V. D., Gallani, M. L., Rowntree, P. R. & Stratton, R. A. The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim. Dyn. 16, 123–146 (2000).

    Article  Google Scholar 

  113. Cox, P. M. et al. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn. 15, 183–203 (1999).

    Article  Google Scholar 

  114. Rulli, M. C., Bellomi, D., Cazzoli, A., De Carolis, G. & D’Odorico, P. The water–land–food nexus of first-generation biofuels. Sci. Rep. 6, 22521 (2016).

    Article  CAS  Google Scholar 

  115. Albrecht, T. R., Crootof, A. & Scott, C. A. The water–energy–food nexus: a systematic review of methods for nexus assessment. Environ. Res. Lett. 13, 43002 (2018).

    Article  Google Scholar 

  116. Hoekstra, A. Y., Chapagain, A. K., Mekonnen, M. M. & Aldaya, M. M. The Water Footprint Assessment Manual: Setting the Global Standard (Routledge, 2011).

  117. Lesiv, M. et al. Spatial distribution of arable and abandoned land across former Soviet Union countries. Sci. Data 5, 180056 (2018).

    Article  Google Scholar 

  118. Tschora, H. & Cherubini, F. Co-benefits and trade-offs of agroforestry for climate change mitigation and other sustainability goals in West Africa. Glob. Ecol. Conserv. 22, e00919 (2020).

    Article  Google Scholar 

  119. Dowdy, A. J. et al. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Sci. Rep. 9, 10073 (2019).

    Article  Google Scholar 

  120. Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).

    Article  CAS  Google Scholar 

  121. Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl Acad. Sci. USA 111, 3251–3256 (2014).

    Article  CAS  Google Scholar 

  122. Pittman, S. E. et al. Mitigating the potential for invasive spread of the exotic biofuel crop, Miscanthus × giganteus. Biol. Invasions 17, 3247–3261 (2015).

    Article  Google Scholar 

  123. Chou, S. C. et al. Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios. Am. J. Clim. Change 3, 512–527 (2014).

    Article  Google Scholar 

  124. Cox, P. M., Betts, R. A., Collins, M. & Harris, P. P. Amazonian forest dieback under climate–carbon cycle projections for the 21st century. Theor. Appl. Climatol. 156, 137–156 (2004).

    Google Scholar 

  125. Cox, P. M., Betts, R. A., Jones, C. D. & Spall, S. A. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    Article  CAS  Google Scholar 

  126. Gomes, V. H. F., Vieira, I. C. G., Salomão, R. P. & Steege, H. Amazonian tree species threatened by deforestation and climate change. Nat. Clim. Change 9, 547–553 (2019).

    Article  Google Scholar 

  127. Lyra, A. D. A., Chou, S. C. & Sampaio, G. D. O. Sensitivity of the Amazon biome to high resolution climate change projections. Acta Amazon. 46, 175–188 (2016).

    Article  Google Scholar 

  128. Rammig, A. et al. Estimating the risk of Amazonian forest dieback. New Phytol. 187, 694–706 (2010).

    Article  CAS  Google Scholar 

  129. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article  CAS  Google Scholar 

  130. Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).

    Article  CAS  Google Scholar 

  131. Sorribas, M. V. et al. Projections of climate change effects on discharge and inundation in the Amazon basin. Climatic Change 136, 555–570 (2016).

    Article  CAS  Google Scholar 

  132. Feng, S. et al. Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations. Glob. Planet. Change 112, 41–52 (2014).

    Article  Google Scholar 

  133. Levis, S., Badger, A., Drewniak, B., Nevison, C. & Ren, X. CLMcrop yields and water requirements: avoided impacts by choosing RCP 4.5 over 8.5. Clim. Change 146, 501–515 (2018).

    Article  Google Scholar 

  134. Cairns, R. & Krzywoszynska, A. Anatomy of a buzzword: the emergence of ‘the water–energy–food nexus’ in UK natural resource debates. Environ. Sci. Policy 64, 164–170 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The support of the Norwegian Research Council is acknowledged through the projects Bio4Fuels (project no. 257622), BioPath (project no. 293434) and MitiStress (project no. 286773). We thank B. Huang, X. Hu, H. Muri, D. Moran and C. Iordan for discussions regarding spatial data analysis. Additionally, we thank P. Chu for language editing. We gratefully acknowledge the provision of land cover data by ESA CCI-LC, GAEZ and SSP data by IIASA, lower heating values by Phyllis2, physical water scarcity data and cropland inventories by FAO, GPWv4 data and Panoply 4 by NASA and biodiversity hotspots data70.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the study, collected the data and analysed the results. J.S.N. developed custom code and generated all results and figures. J.S.N. wrote the manuscript with contributions from O.C. and F.C.

Corresponding author

Correspondence to Jan Sandstad Næss.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks John Campbell, Katherine Zipp and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Bioenergy potentials on abandoned cropland with a mixed management distribution based on existing yield gaps.

Results refer to present day climate with optimal crop allocation. Figures describe the agricultural management intensity distribution (a), global bioenergy potentials (b-c), bioenergy yields (d-e), and productivity distributions (f-g) for abandoned cropland (wide bars) and abandoned cropland outside biodiversity hotspots (thin bars). Figures (b, d, f), and (c, e, g) refer to rain-fed and mixed water supply, respectively. Average yields in (f) and (g) refer to only productive areas. Maps are shown at 5 arc minutes and 1 degree for (a) and (b-e), respectively (for improved visualization).

Source data

Extended Data Fig. 2 Spatial explicit changes in bioenergy potentials under future climatic conditions relative to present day.

Maps describe changes (%) in 2050 for RCP4.5 (a) and RCP8.5 (b), and in 2080 for RCP4.5 (c) and RCP8.5 (d). Results refer to optimal crop allocation, high management intensity, and rain-fed water supply. Crop allocation is re-optimized under each future climate projection. Maps are shown at one-degree resolution (aggregated for visualization purposes).

Source data

Extended Data Fig. 3 Global bioenergy potentials under climate change.

Bioenergy potentials (EJ year−1) on abandoned cropland are shown for 2050 and 2080 under RCP4.5 and RCP8.5 for a set of different constraints. Land availability is constrained by consideration of abandoned cropland with or without (thinner bars) biodiversity hotspots. Three agricultural management intensity levels (low, medium and high) and three water supply levels (rain-fed, irrigated and mixed) are considered. Specific contributions from irrigated areas and individual crops to total potentials are shown.

Source data

Extended Data Fig. 4 Spatially explicit water withdrawals and blue water footprint of irrigated bioenergy potentials on abandoned cropland.

Maps describe present day characteristics for two agricultural management intensities (medium, high), with optimal energy-based crop allocation per grid cell. Water withdrawals are given as million m3 year−1, and blue water footprint as m3 GJ−1. Maps are shown at one-degree resolution (aggregated for visualization purposes).

Source data

Extended Data Fig. 5 Comparison of bioenergy potentials with future projections.

Bioenergy potentials on abandoned cropland (optimal crop allocation), relative to median projected primary bioenergy demand in 2050 across different SSPs in top-down Integrated Assessment Models (%). Land availability for bioenergy production is constrained by consideration of abandoned cropland with or without biodiversity hotspots. Three agricultural management intensity levels (low, medium and high) and three water supply levels (rain-fed, irrigated and mixed) are considered. Individual figures refer to (a) bioenergy potentials at present day relative to median projected demand in 1.9 W m−2 scenarios, and (b) bioenergy potentials in 2050 for RCP4.5 relative to median projected demand in 4.5 W m−2 scenarios. SSP3 is not shown in a, as no models could reach the 1.5 °C climate target.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Texts 1–3 and Tables 1–4.

Reporting Summary

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Næss, J.S., Cavalett, O. & Cherubini, F. The land–energy–water nexus of global bioenergy potentials from abandoned cropland. Nat Sustain 4, 525–536 (2021). https://doi.org/10.1038/s41893-020-00680-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-020-00680-5

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene