Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters

Abstract

Metal chalcogenide magic-sized nanoclusters have shown intriguing photophysical and chemical properties, yet ambient instability has hampered their extensive applications. Here we explore the periodic assembly of these nanoscale building blocks through organic linkers to overcome such limitations and further boost their properties. We designed a diamine-based heat-up self-assembly process to assemble Mn2+:(CdSe)13 and Mn2+:(ZnSe)13 magic-sized nanoclusters into three- and two-dimensional suprastructures, respectively, obtaining enhanced stability and solid-state photoluminescence quantum yields (from <1% for monoamine-based systems to ~72% for diamine-based suprastructures). We also exploited the atomic-level miscibility of Cd and Zn to synthesize Mn2+:(Cd1−xZnxSe)13 alloy suprastructures with tunable metal synergy: Mn2+:(Cd0.5Zn0.5Se)13 suprastructures demonstrated high catalytic activity (turnover number, 17,964 per cluster in 6 h; turnover frequency, 2,994 per cluster per hour) for converting CO2 to organic cyclic carbonates under mild reaction conditions. The enhanced stability, photoluminescence and catalytic activity through combined cluster-assembly and metal synergy advance the usability of inorganic semiconductor nanoclusters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the unique growth pathways of MSCs.
Fig. 2: Morphology characterization of SSs of MSCs and NRs.
Fig. 3: Optical and photophysical properties of MSCs and their SSs.
Fig. 4: Ambient stability and photostability comparison.
Fig. 5: Catalytic performance of SSs of MSCs.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Image datasets in the main text and all the data in the Supplementary Information are available from the corresponding author upon reasonable request.

References

  1. Williamson, C. B. et al. Chemically reversible isomerization of inorganic clusters. Science 363, 731–735 (2019).

    Article  CAS  Google Scholar 

  2. Beecher, A. N. et al. Atomic structures and gram scale synthesis of three tetrahedral quantum dots. J. Am. Chem. Soc. 136, 10645–10653 (2014).

    Article  CAS  Google Scholar 

  3. Nevers, D. R. et al. Mesophase formation stabilizes high-purity magic-sized clusters. J. Am. Chem. Soc. 140, 3652–3662 (2018).

    Article  CAS  Google Scholar 

  4. Gary, D. C. et al. Single-crystal and electronic structure of a 1.3 nm indium phosphide nanocluster. J. Am. Chem. Soc. 138, 1510–1513 (2016).

    Article  CAS  Google Scholar 

  5. Kasuya, A. et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater. 3, 99–102 (2004).

    Article  CAS  Google Scholar 

  6. Palencia, C., Yu, K. & Boldt, K. The future of colloidal semiconductor magic-size clusters. ACS Nano 14, 1227–1235 (2020).

    Article  CAS  Google Scholar 

  7. Gary, D. C., Terban, M. W., Billinge, S. J. L. & Cossairt, B. M. Two-step nucleation and growth of InP quantum dots via magic-sized cluster intermediates. Chem. Mater. 27, 1432–1441 (2015).

    Article  CAS  Google Scholar 

  8. Lee, J., Yang, J., Kwon, S. G. & Hyeon, T. Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater. 1, 16034 (2016).

    Article  CAS  Google Scholar 

  9. Kudera, S. et al. Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 19, 548–552 (2007).

    Article  CAS  Google Scholar 

  10. Friedfeld, M. R., Stein, J. L., Ritchhart, A. & Cossairt, B. M. Conversion reactions of atomically precise semiconductor clusters. Acc. Chem. Res. 51, 2803–2810 (2018).

    Article  CAS  Google Scholar 

  11. Tan, L. et al. Structures of CdSe and CdS nanoclusters from ab initio random structure searching. J. Phys. Chem. C 123, 29370–29378 (2019).

    Article  CAS  Google Scholar 

  12. Dolai, S. et al. Isolation of bright blue light-emitting CdSe nanocrystals with 6.5 kDa core in gram scale: high photoluminescence efficiency controlled by surface ligand chemistry. Chem. Mater. 26, 1278–1285 (2014).

    Article  CAS  Google Scholar 

  13. Zhang, B. et al. Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. Nat. Commun. 9, 2499 (2018).

    Article  Google Scholar 

  14. VanWie, T., Wysocki, E., McBride, J. R. & Rosenthal, S. J. Bright cool white emission from ultrasmall CdSe quantum dots. Chem. Mater. 31, 8558–8562 (2019).

    Article  CAS  Google Scholar 

  15. DeGroot, M. W., Taylor, N. J. & Corrigan, J. F. Zinc chalcogenolate complexes as capping agents in the synthesis of ternary II−II′−VI nanoclusters: structure and photophysical properties of [(N,N′-tmeda)5Zn5Cd11Se13(SePh)6(thf)2]. J. Am. Chem. Soc. 125, 864–865 (2003).

    Article  CAS  Google Scholar 

  16. Huang, X. et al. Flexible hybrid semiconductors with low thermal conductivity: the role of organic diamines. Angew. Chem. Int. Ed. 48, 7871–7874 (2009).

    Article  CAS  Google Scholar 

  17. Harrell, S. M., McBride, J. R. & Rosenthal, S. J. Synthesis of ultrasmall and magic-sized CdSe nanocrystals. Chem. Mater. 25, 1199–1210 (2013).

    Article  CAS  Google Scholar 

  18. Wang, Y. et al. Isolation of the magic-size CdSe nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. Angew. Chem. Int. Ed. 51, 6154–6157 (2012).

    Article  CAS  Google Scholar 

  19. Levchenko, T. I. et al. Luminescent CdSe superstructures: a nanocluster superlattice and a nanoporous crystal. J. Am. Chem. Soc. 139, 1129–1144 (2017).

    Article  CAS  Google Scholar 

  20. Kwon, Y. et al. Evolution from unimolecular to colloidal-quantum-dot-like character in chlorine or zinc incorporated InP magic size clusters. Nat. Commun. 11, 3127 (2020).

    Article  CAS  Google Scholar 

  21. Wang, C. et al. Three-dimensional superlattices built from (M4In16S33)10− (M = Mn, Co, Zn, Cd) supertetrahedral clusters. J. Am. Chem. Soc. 123, 11506–11507 (2001).

    Article  CAS  Google Scholar 

  22. Robinson, R. D. et al. Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317, 355–358 (2007).

    Article  CAS  Google Scholar 

  23. Talapin, D. V. et al. Dynamic distribution of growth rates within the ensembles of colloidal II−VI and III−V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J. Am. Chem. Soc. 124, 5782–5790 (2002).

    Article  CAS  Google Scholar 

  24. Wang, Q. & Astruc, D. State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 120, 1438–1511 (2020).

    Article  CAS  Google Scholar 

  25. Trickett, C. A. et al. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2, 17045 (2017).

    Article  CAS  Google Scholar 

  26. Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    Article  CAS  Google Scholar 

  27. Cao, M. et al. Porphyrinic silver cluster assembled material for simultaneous capture and photocatalysis of mustard-gas simulant. J. Am. Chem. Soc. 141, 14505–14509 (2019).

    Article  CAS  Google Scholar 

  28. Huang, R.-W. et al. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal–organic framework. Nat. Chem. 9, 689–697 (2017).

    Article  CAS  Google Scholar 

  29. Polgar, A. M., Weigend, F., Zhang, A., Stillman, M. J. & Corrigan, J. F. A N-heterocyclic carbene-stabilized coinage metal-chalcogenide framework with tunable optical properties. J. Am. Chem. Soc. 139, 14045–14048 (2017).

    Article  CAS  Google Scholar 

  30. Deacy, A. C., Kilpatrick, A. F. R., Regoutz, A. & Williams, C. K. Understanding metal synergy in heterodinuclear catalysts for the copolymerization of CO2 and epoxides. Nat. Chem. 12, 372–380 (2020).

    Article  CAS  Google Scholar 

  31. Xia, Y. et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotechnol. 6, 580–587 (2011).

    Article  CAS  Google Scholar 

  32. Tang, Z., Kotov, N. A. & Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237–240 (2002).

    Article  CAS  Google Scholar 

  33. Levchenko, T. I. et al. Controlled solvothermal routes to hierarchical 3D superparticles of nanoscopic CdS. Chem. Mater. 27, 3666–3682 (2015).

    Article  CAS  Google Scholar 

  34. Guldi, D. M. et al. Versatile organic (fullerene)−inorganic (CdTe nanoparticle) nanoensembles. J. Am. Chem. Soc. 126, 14340–14341 (2004).

    Article  CAS  Google Scholar 

  35. Tang, Z., Zhang, Z., Wang, Y., Glotzer, S. C. & Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006).

    Article  CAS  Google Scholar 

  36. Claridge, S. A. et al. Cluster-assembled materials. ACS Nano 3, 244–255 (2009).

    Article  CAS  Google Scholar 

  37. Boles, M. A. & Talapin, D. V. Self-assembly of tetrahedral CdSe nanocrystals: effective “patchiness” via anisotropic steric interaction. J. Am. Chem. Soc. 136, 5868–5871 (2014).

    Article  CAS  Google Scholar 

  38. Yang, J. et al. Chemical synthesis, doping, and transformation of magic-sized semiconductor alloy nanoclusters. J. Am. Chem. Soc. 139, 6761–6770 (2017).

    Article  CAS  Google Scholar 

  39. Liu, Y.-H., Wang, F., Wang, Y., Gibbons, P. C. & Buhro, W. E. Lamellar assembly of cadmium selenide nanoclusters into quantum belts. J. Am. Chem. Soc. 133, 17005–17013 (2011).

    Article  CAS  Google Scholar 

  40. Yu, J. H. et al. Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons. Nat. Mater. 9, 47–53 (2010).

    Article  CAS  Google Scholar 

  41. Hsieh, T.-E. et al. Unraveling the structure of magic-size (CdSe)13 cluster pairs. Chem. Mater. 30, 5468–5477 (2018).

    Article  CAS  Google Scholar 

  42. Wang, Y. et al. The magic-size nanocluster (CdSe)34 as a low-temperature nucleant for cadmium selenide nanocrystals; room-temperature growth of crystalline quantum platelets. Chem. Mater. 26, 2233–2243 (2014).

    Article  CAS  Google Scholar 

  43. Yang, J. et al. Route to the smallest doped semiconductor: Mn2+-doped (CdSe)13 clusters. J. Am. Chem. Soc. 137, 12776–12779 (2015).

    Article  CAS  Google Scholar 

  44. Alkordi, M. H. et al. CO2 conversion: the potential of porous-organic polymers (POPs) for catalytic CO2–epoxide insertion. J. Mater. Chem. A 4, 7453–7460 (2016).

    Article  CAS  Google Scholar 

  45. Yang, X. et al. Temperature- and Mn2+ concentration-dependent emission properties of Mn2+-doped ZnSe nanocrystals. J. Am. Chem. Soc. 141, 2288–2298 (2019).

    Article  CAS  Google Scholar 

  46. Ouyang, X. et al. DNA nanoribbon-templated self-assembly of ultrasmall fluorescent copper nanoclusters with enhanced luminescence. Angew. Chem. Int. Ed. 59, 11836–11844 (2020).

    Article  CAS  Google Scholar 

  47. Wu, Z. et al. Assembly-induced enhancement of Cu nanoclusters luminescence with mechanochromic property. J. Am. Chem. Soc. 137, 12906–12913 (2015).

    Article  CAS  Google Scholar 

  48. Lawrence, K. N. et al. Dual role of electron-accepting metal-carboxylate ligands: reversible expansion of exciton delocalization and passivation of nonradiative trap-states in molecule-like CdSe nanocrystals. J. Am. Chem. Soc. 138, 12813–12825 (2016).

    Article  CAS  Google Scholar 

  49. Pabla, A. S. et al. Tailoring of internal fields in InGaAs/GaAs multiwell structures grown on (111)B GaAs. Appl. Phys. Lett. 63, 752–754 (1993).

    Article  CAS  Google Scholar 

  50. Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86–89 (2005).

    Article  CAS  Google Scholar 

  51. Samantaray, M. K. et al. The comparison between single atom catalysis and surface organometallic catalysis. Chem. Rev. 120, 734–813 (2020).

    Article  CAS  Google Scholar 

  52. Liang, L. et al. Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nat. Commun. 8, 1233 (2017).

    Article  Google Scholar 

  53. D’Elia, V. et al. Cooperative effect of monopodal silica-supported niobium complex pairs enhancing catalytic cyclic carbonate production. J. Am. Chem. Soc. 137, 7728–7739 (2015).

    Article  Google Scholar 

  54. Burkart, M. D., Hazari, N., Tway, C. L. & Zeitler, E. L. Opportunities and challenges for catalysis in carbon dioxide utilization. ACS Catal. 9, 7937–7956 (2019).

    Article  CAS  Google Scholar 

  55. McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303–308 (2015).

    Article  CAS  Google Scholar 

  56. Bootharaju, M. S. et al. A new class of atomically precise, hydride-rich silver nanoclusters co-protected by phosphines. J. Am. Chem. Soc. 138, 13770–13773 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T.H. acknowledges the financial support by the Research Center Program of the IBS (IBS-R006-D1) in Korea. D.R.G. acknowledges support from the US National Science Foundation (NSF) through the UW Molecular Engineering Materials Center, a Materials Research Science and Engineering Center (DMR-1719797), and through project DMR-1807394. This research was also supported by the Clean Energy Institute at the University of Washington.

Author information

Authors and Affiliations

Authors

Contributions

W.B., M.S.B. and T.H. conceived the research. W.B. and M.S.B. designed the experiments. W.B., M.S.B., K.M.W. and S.L. performed experiments and analysed the results. K.M.W. determined PLQY values and performed temperature-dependent PL and lifetime experiments. M.S.B. and W.B. performed catalytic CO2 conversion. S.L. conducted the HAADF-STEM and EDS analysis. W.B., M.S.B., K.M.W., S.L., D.R.G. and T.H. wrote the manuscript. T.H. supervised the project. All authors commented on the manuscript.

Corresponding author

Correspondence to Taeghwan Hyeon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Raffaella Buonsanti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–40, including Supplementary Figs. 1–34, Tables 1–4 and refs. 1–18.

Source data

Source Data Fig. 3

Numerical data used to generate Fig. 3.

Source Data Fig. 4

Numerical data used to generate Fig. 4.

Source Data Fig. 5

Numerical data used to generate Fig. 5b,c.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, W., Bootharaju, M.S., Walsh, K.M. et al. Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters. Nat. Mater. 20, 650–657 (2021). https://doi.org/10.1038/s41563-020-00880-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-00880-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing