Skip to main content
Log in

HNF1A-MODY Mutations in Nuclear Localization Signal Impair HNF1A-Import Receptor KPNA6 Interactions

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Mutations in hepatocyte nuclear factor (HNF)1A gene cause the most common form of Maturity-onset diabetes of the young (MODY), a monogenic subtype of diabetes mellitus. Functional characterization of mutant proteins reveals that mutations may disrupt DNA binding capacity, transactivation ability and nuclear localization of HNF1A depending on the position of the mutation. Previously identified Arg271Trp and Ser345Tyr mutations in HNF1A were found to be defective in nuclear localization. Arg271 residue resides in a region similar to classical nuclear localization signal (NLS) motif, while Ser345 does not. Importin α family members recognize NLS motifs on cargo proteins and subsequently translocate them into nucleus. Here, we first investigated the nuclear localization mechanism of wild type HNF1A protein. For this purpose, we analyzed the interaction of HNF1A with three mouse homolog importin α proteins (KPNA2, KPNA4 and KPNA6) by co-immunoprecipitation assay and molecular docking simulation. Hereby, KPNA6 was identified as the main import receptor, which is responsible for the transport of HNF1A into the nucleus. Immunolocalization studies in mouse pancreatic cells (Min6) also confirmed the co-localization of HNF1A and KPNA6 in the cytoplasm. Secondly, the interaction between KPNA6 and mutant HNF1A proteins (Arg271Trp and Ser345Tyr) was assessed. Co-immunoprecipitation studies revealed a reduced interaction compared to wild type HNF1A. Our study demonstrated for the first time that HNF1A transcription factor is recognized and transported by importin/karyopherin import family, and mutations in NLS motifs may disrupt the interaction leading to nuclear localization abnormalities and MODY phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murphy R, Ellard S, Hattersley AT (2008) Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab. https://doi.org/10.1038/ncpendmet0778

    Article  PubMed  Google Scholar 

  2. Fajans SS, Bell GI (2011) MODY: history, genetics, pathophysiology, and clinical decision making. Diabetes Care. https://doi.org/10.2337/dc11-0035

    Article  PubMed  PubMed Central  Google Scholar 

  3. Anık A, Çatlı G, Abacı A, Böber E (2014) Maturity-onset diabetes of the young (MODY): an update. J Pediatr Endocrinol Metab. https://doi.org/10.1515/jpem-2014-0384

    Article  PubMed  Google Scholar 

  4. Urakami T (2019) Maturity-onset diabetes of the young (MODY): current perspectives on diagnosis and treatment. Diabetes Metab Syndr Obes. https://doi.org/10.2147/DMSO.S179793

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang H, Antinozzi PA, Hagenfeldt KA, Maechler P, Wollheim CB (2000) Molecular targets of a human HNF1 alpha mutation responsible for pancreatic beta-cell dysfunction. EMBO J. https://doi.org/10.1093/emboj/19.16.4257

    Article  PubMed  PubMed Central  Google Scholar 

  6. Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, Volkert TL, Schreiber J, Rolfe PA, Gifford DK, Fraenkel E, Bell GI, Young RA (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science. https://doi.org/10.1126/science.1089769

    Article  PubMed  PubMed Central  Google Scholar 

  7. Servitja JM, Pignatelli M, Maestro MA, Cardalda C, Boj SF, Lozano J, Blanco E, Lafuente A, McCarthy MI, Sumoy L, Guigó R, Ferrer J (2009) Hnf1alpha (MODY3) controls tissue-specific transcriptional programs and exerts opposed effects on cell growth in pancreatic islets and liver. Mol Cell Biol. https://doi.org/10.1128/MCB.01389-08

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pontoglio M, Sreenan S, Roe M, Pugh W, Ostrega D, Doyen A, Pick AJ, Baldwin A, Velho G, Froguel P, Levisetti M, Bonner-Weir S, Bell GI, Yaniv M, Polonsky KS (1998) Defective insulin secretion in hepatocyte nuclear factor 1alpha-deficient mice. J Clin Invest. https://doi.org/10.1172/JCI2548

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mendel DB, Crabtree GR (1991) HNF-1, a member of a novel class of dimerizing homeodomain proteins. J Biol Chem 266(2):677–680

    Article  CAS  PubMed  Google Scholar 

  10. Valkovicova T, Skopkova M, Stanik J, Gasperikova D (2019) Novel insights into genetics and clinics of the HNF1A-MODY. Endocr Regul. https://doi.org/10.2478/enr-2019-0013

    Article  PubMed  Google Scholar 

  11. Bjørkhaug L, Sagen JV, Thorsby P, Søvik O, Molven A, Njølstad PR (2003) Hepatocyte nuclear factor-1 alpha gene mutations and diabetes in Norway. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2002-020945

    Article  PubMed  Google Scholar 

  12. Najmi LA, Aukrust I, Flannick J et al (2017) Functional investigations of HNF1A identify rare variants as risk factors for type 2 diabetes in the general population. Diabetes. https://doi.org/10.2337/db16-0460

    Article  PubMed  Google Scholar 

  13. Bjørkhaug L, Bratland A, Njølstad PR, Molven A (2005) Functional dissection of the HNF-1alpha transcription factor: a study on nuclear localization and transcriptional activation. DNA Cell Biol. https://doi.org/10.1089/dna.2005.24.661

    Article  PubMed  Google Scholar 

  14. Radu A, Blobel G, Moore MS (1995) Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoporins. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.92.5.1769

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li C, Goryaynov A, Yang W (2016) The selective permeability barrier in the nuclear pore complex. Nucleus. https://doi.org/10.1080/19491034.2016.1238997

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mosammaparast N, Pemberton LF (2004) Karyopherins: from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2004.09.004

    Article  PubMed  Google Scholar 

  17. Freitas N, Cunha C (2009) Mechanisms and signals for the nuclear import of proteins. Curr Genomics. https://doi.org/10.2174/138920209789503941

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ström AC, Weis K (2001) Importin-beta-like nuclear transport receptors. Genome Biol. https://doi.org/10.1186/gb-2001-2-6-reviews3008

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lange A, McLane LM, Mills RE, Devine SE, Corbett AH (2010) Expanding the definition of the classical bipartite nuclear localization signal. Traffic. https://doi.org/10.1111/j.1600-0854.2009.01028.xn

    Article  PubMed  Google Scholar 

  20. Cros JF, García-Sastre A, Palese P (2005) An unconventional NLS is critical for the nuclear import of the influenza A virus nucleoprotein and ribonucleoprotein. Traffic. https://doi.org/10.1111/j.1600-0854.2005.00263.x

    Article  PubMed  Google Scholar 

  21. Pumroy RA, Cingolani G (2015) Diversification of importin-α isoforms in cellular trafficking and disease states. Biochem J. https://doi.org/10.1042/BJ20141186

    Article  PubMed  Google Scholar 

  22. Galán M, García-Herrero CM, Azriel S, Gargallo M, Durán M, Gorgojo JJ, Andía VM, Navas MA (2011) Differential effects of HNF-1α mutations associated with familial young-onset diabetes on target gene regulation. Mol Med. https://doi.org/10.2119/molmed.2010.00097

    Article  PubMed  Google Scholar 

  23. Chi YI, Frantz JD, Oh BC, Hansen L, Dhe-Paganon S, Shoelson SE (2002) Diabetes mutations delineate an atypical POU domain in HNF-1alpha. Mol Cell. https://doi.org/10.1016/s1097-2765(02)00704-9

    Article  PubMed  Google Scholar 

  24. Hirano H, Matsuura Y (2011) Sensing actin dynamics: structural basis for G-actin-sensitive nuclear import of MAL. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2011.09.079

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bienert S, Waterhouse A, de Beer TAP, Tauriello G, Studer G, Bordoli L, Schwede T (2017) The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw1132

    Article  PubMed  Google Scholar 

  26. Koyama M, Matsuura Y (2017) Crystal structure of importin-α3 bound to the nuclear localization signal of Ran-binding protein 3. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2017.07.155

    Article  PubMed  Google Scholar 

  27. Pumroy RA, Ke S, Hart DJ, Zachariae U, Cingolani G (2015) Molecular determinants for nuclear import of influenza A PB2 by importin α isoforms 3 and 7. Structure. https://doi.org/10.1016/j.str.2014.11.015

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics. https://doi.org/10.1093/bioinformatics/btu097

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mintseris J, Pierce B, Wiehe K, Anderson R, Chen R, Weng Z (2007) Integrating statistical pair potentials into protein complex prediction. Proteins. https://doi.org/10.1002/prot.21502

    Article  PubMed  Google Scholar 

  30. Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA–a self-parameterizing force field. Proteins. https://doi.org/10.1002/prot.10104

    Article  PubMed  Google Scholar 

  31. Oka M, Yoneda Y (2018) Importin α: functions as a nuclear transport factor and beyond. Proc Jpn Acad Ser B. https://doi.org/10.2183/pjab.94.018

    Article  Google Scholar 

  32. Melen K, Fagerlund R, Franke J, Kohler M, Kinnunen L, Julkunen I (2003) Importin alpha nuclear localization signal binding sites for STAT1, STAT2, and influenza A virus nucleoprotein. J Biol Chem. https://doi.org/10.1074/jbc.M303571200

    Article  PubMed  Google Scholar 

  33. Köhler M, Buchwalow IB, Alexander G, Christiansen M, Shagdarsuren E, Samoilova V, Hartmann E, Mervaala EM, Haller H (2001) Increased importin alpha protein expression in diabetic nephropathy. Kidney Int. https://doi.org/10.1046/j.1523-1755.2001.00069.x

    Article  PubMed  Google Scholar 

  34. Balamurugan K, Bjørkhaug L, Mahajan S, Kanthimathi S, Njølstad PR, Srinivasan N, Mohan V, Radha V (2016) Structure-function studies of HNF1A (MODY3) gene mutations in South Indian patients with monogenic diabetes. Clin Genet. https://doi.org/10.1111/cge.12757

    Article  PubMed  Google Scholar 

  35. Nakada R, Hirano H, Matsuura Y (2015) Structure of importin-α bound to a non-classical nuclear localization signal of the influenza A virus nucleoprotein. Sci Rep. https://doi.org/10.1038/srep15055

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding support from the Scientific and Technological Research Council of Turkey (TÜBİTAK) (Grant Number: 116Z564)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özlem Yalçın Çapan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fareed, F.M.A., Korulu, S., Özbil, M. et al. HNF1A-MODY Mutations in Nuclear Localization Signal Impair HNF1A-Import Receptor KPNA6 Interactions. Protein J 40, 512–521 (2021). https://doi.org/10.1007/s10930-020-09959-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09959-0

Keywords

Navigation