Skip to main content
Log in

Effects of density-affecting scalar on the onset of chaos in a simplified model of thermal convection: a nonlinear dynamical perspective

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

To explore how density-affecting scalar influences the onset of chaos in a simplified model of thermal convection, we consider three versions of a physically extended Lorenz system obtained from incorporating additional physical ingredients such as rotation and density-affecting scalar. The three versions of the extended Lorenz system correspond to the cases when the density-affecting scalar has positive, neutral, and negative impacts on buoyancy. In general, compared to the case when the density-affecting scalar has a positive (neutral) impact on buoyancy, the case when the density-affecting scalar has a neutral (negative) impact on buoyancy leads to a higher critical Rayleigh parameter, a sign of delayed onset of chaos. For an appropriate choice of parameters that lead to chaotic solutions in all three cases, it is shown that the chaotic attractors for the three cases can exhibit a variety of different characteristics, such as taking on the shape of the classic Lorenz attractor, sharing the phase space with stable point attractors, and taking an unusual shape that is distinguished from the Lorenz attractor. The different characteristics in chaotic attractors lead to qualitative differences in the behaviour exhibited by the corresponding flow and temperature patterns reconstructed from the numerical solutions. Further analysis of this simplified model offering a nonlinear dynamical perspective on the thermal convection problem is expected to serve as an avenue for gaining new insights into this and related problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. B. Saltzman, J. Atmos. Sci. 19, 329–341 (1962)

    Article  ADS  Google Scholar 

  2. E.N. Lorenz, J. Atmos. Sci. 20, 130–141 (1963)

    Article  ADS  Google Scholar 

  3. J.C. Wyngaard, Turbulence in the Atmosphere (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  4. E. Yee, Boundary-Layer Meteorol. 57, 49–78 (1991)

    Article  ADS  Google Scholar 

  5. G. Poveda-Jaramillo, C.E. Puente, Boundary-Layer Meteorol. 64, 175–197 (1993)

    Article  ADS  Google Scholar 

  6. R.O. Weber, P. Talkner, G. Stefanicki, L. Arvisais, Boundary-Layer Meteorol. 73, 1–14 (1995)

    Article  Google Scholar 

  7. M.C. Gallego, J.A. García, M.L. Cancillo, Boundary-Layer Meteorol. 100, 375–392 (2001)

    Article  ADS  Google Scholar 

  8. G. Veronis, J. Fluid Mech. 34, 315–336 (1968)

    Article  ADS  Google Scholar 

  9. L. Stenflo, Phys. Scripta 53, 83–84 (1996)

    Article  ADS  Google Scholar 

  10. L.R.M. Maas, Tellus 46A, 671–680 (1994)

    Article  ADS  Google Scholar 

  11. S. Moon, J.M. Seo, B.-S. Han, J. Park, J.-J. Baik, Chaos 29, 063129 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  12. G.M. Mahmoud, A.A. Arafa, E.E. Mahmoud, Eur. Phys. J. Plus 132, 461 (2017)

    Article  Google Scholar 

  13. P.G. Siddheshwar, D. Uma, B. Shivaraj, Eur. Phys. J. Plus 135, 138 (2020)

    Article  Google Scholar 

  14. W.M. Macek, Nonlinear Dyn. 94, 2957–2968 (2018)

    Article  Google Scholar 

  15. M.Y. Yu, Phys. Scripta T82, 10–11 (1999)

    Article  ADS  Google Scholar 

  16. P.C. Rech, Phys. Scripta 91, 075201 (2016)

    Article  ADS  Google Scholar 

  17. J.A. Yorke, E.D. Yorke, J. Stat. Phys. 21, 263–277 (1979)

    Article  ADS  Google Scholar 

  18. S. Chandrasekhar, Proc. R. Soc. Lond. 217, 306–327 (1952)

    ADS  Google Scholar 

  19. A. Prosperetti, Phys. Fluids 24, 114101 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  20. F. Christiansen, H.H. Rugh, Nonlinearity 10, 1063–1072 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  21. C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors (Springer, New York, 1982)

    Book  Google Scholar 

  22. C. Li, J.C. Sprott, Int. J. Bifurc. Chaos 24, 1450131 (2014)

    Article  Google Scholar 

  23. A.A.M. Holtslag, C.-H. Moeng, J. Atmos. Sci. 48, 1690–1698 (1991)

    Article  ADS  Google Scholar 

  24. T.N. Palmer, Bull. Am. Meteorol. Soc. 74, 065202 (1993)

    Article  Google Scholar 

  25. E.J. Doedel, B. Krauskopf, H.M. Osinga, Nonlinearity 19, 2947–2972 (2006)

    Article  MathSciNet  Google Scholar 

  26. F. Zhang, Y.Q. Sun, L. Magnusson, R. Buizza, S.-J. Lin, J.-H. Chen, K. Emanuel, J. Atmos. Sci. 76, 1077–1091 (2019)

    Article  ADS  Google Scholar 

  27. G.S. Duane, J.J. Tribbia, J.B. Weiss, Nonlinear Process. Geophys. 13, 601–612 (2006)

    Article  ADS  Google Scholar 

  28. B.-W. Shen, J. Atmos. Sci. 71, 1701–1723 (2014)

    Article  ADS  Google Scholar 

  29. J. Park, B.-S. Han, H. Lee, Y.-L. Jeon, J.-J. Baik, Phys. Scripta 91, 49–65 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Jin Baik.

Ethics declarations

Funding

This work was supported by the Small Grant for Exploratory Research (SGER) program through the National Research Foundation of Korea (NRF-2018R1D1A1A02086007).

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Code availability

The MATLAB and Fortran custom codes used in this study are available from the corresponding author upon request.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mov 6968 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, S., Baik, JJ., Seo, J.M. et al. Effects of density-affecting scalar on the onset of chaos in a simplified model of thermal convection: a nonlinear dynamical perspective. Eur. Phys. J. Plus 136, 92 (2021). https://doi.org/10.1140/epjp/s13360-020-01047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-01047-7

Navigation