Skip to main content
Log in

Optimization of Parameters to Improve the Properties of AA7178/Si3N4 Composites Employing Taguchi Approach

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the recent days, the employ of aluminum alloy has enriched dramatically especially in engineering applications extensively employed in ship building, aerospace, structural, non-structural and automotive applications like driveshaft, wheels, crankshaft, connecting rod, chassis, brake rotors, cylinder blocks and piston etc. The foremost objective of this evaluation is to optimize the impacts of stir casting parameters of Aluminium Alloy AA7178/Si3N4 with response of tensile strength by utilizing Taguchi approach. MINITAB software was employed for conducting the Taguchi analysis. The stir casting parameters of this examination are stirring speed, stirring time and reinforcement percentage. The tensile behaviour of AA7178/Si3N4 composites for varying filler mass proportionate, stirring speed and stirring time were assessed employing a “universal testing machine”, and using a L9 (3)3 Taguchi orthogonal array. The nine samples of trials are employed to estimate the tensile behaviour of the composite material. The Analysis of Variance (ANOVA) is extensively assistance to intimate which parameter is highly impact for this evaluation. Amid those factors, filler content as highly influenced factor to response value followed as stirring time and stirring rpm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Sajjadi SA, Ezatpour HR, Torabi Parizi M (2012) Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes. Mater Des 34:106–111. https://doi.org/10.1016/j.matdes.2011.07.037

    Article  CAS  Google Scholar 

  2. Poria S, Sahoo P, Sutradhar G (2016) Tribological characterization of stir-cast Aluminium-TiB2 metal matrix composites. Silicon. 8:591–599. https://doi.org/10.1007/s12633-016-9437-5

    Article  CAS  Google Scholar 

  3. Suganuma K, Fujita T, Niihara K, Okamoto T, Koizumi M, Suzuki N, Fujita T, Niihara K, Okamoto T, Koizumi M, Suzuki N (2016) Hot extrusion of AA 7178 reinforced with alumina short fibre reinforced vvith alumina short fibre. Mater Sci Technol 0836:249–254. https://doi.org/10.1179/mst.1989.5.3.249

    Article  Google Scholar 

  4. Mohanavel V (2020) Mechanical and microstructural characterization of AA7178-TiB2 composites. Mater Test 62:146–150. https://doi.org/10.3139/120.111465

    Article  CAS  Google Scholar 

  5. Shalaby EAM, Churyumov AY, Besisa DHA, Daoud A, Abou El-khair MT (2017) A comparative study of thermal conductivity and tribological behavior of squeeze cast A359/AlN and A359/SiC composites. J Mater Eng Perform 26:3079–3089. https://doi.org/10.1007/s11665-017-2734-3

    Article  Google Scholar 

  6. Shorowordi KM, Laoui T, Haseeb ASMA, Celis JP, Froyen L (2003) Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study. J Mater Process Technol 142:738–743. https://doi.org/10.1016/S0924-0136(03)00815-X

    Article  CAS  Google Scholar 

  7. Alagarsamy SV, Ravichandran M (2019) Synthesis, microstructure and properties of TiO 2 reinforced AA7075 matrix composites via stir casting route. Mater Res Express 6:086519. https://doi.org/10.1088/2053-1591/ab1d3b

    Article  CAS  Google Scholar 

  8. Shalaby EAM, Churyumov AY, Solonin AN, Lotfy A (2016) Preparation and characterization of hybrid A359/(SiC+Si3N4) composites synthesized by stir/squeeze casting techniques. Mater Sci Eng A 674:18–24. https://doi.org/10.1016/j.msea.2016.07.058

    Article  CAS  Google Scholar 

  9. Mathan Kumar N, Senthil Kumaran S, Kumaraswamidhas LA (2015) An investigation of mechanical properties and corrosion resistance of Al2618 alloy reinforced with Si3N4, AlN and ZrB2 composites. J Alloys Compd 652:244–249. https://doi.org/10.1016/j.jallcom.2015.08.205

    Article  CAS  Google Scholar 

  10. Lotfy A, Pozdniakov AV, Zolotorevskiy VS, Abou El-khair MT, Daoud A, Mochugovskiy AG (2018) Novel preparation of Al-5%Cu / BN and Si3N4 composites with analyzing microstructure, thermal and mechanical properties. Mater Charact 136:144–151. https://doi.org/10.1016/j.matchar.2017.12.015

    Article  CAS  Google Scholar 

  11. Kumar SD, Ravichandran M (2018) Synthesis, characterization and wire electric erosion behaviour of AA7178–10 wt.% ZrB2 composite. Silicon 10:2653–2662. https://doi.org/10.1007/s12633-018-9802-7

    Article  CAS  Google Scholar 

  12. Ramesh CS, Pramod S, Keshavamurthy R (2011) A study on microstructure and mechanical properties of Al 6061-TiB2 in-situ composites. Mater Sci Eng A 528:4125–4132. https://doi.org/10.1016/j.msea.2011.02.024

    Article  CAS  Google Scholar 

  13. Mohanavel V, Ashraff Ali KS, Prasath S, Sathish T, Ravichandran M (2020) Microstructural and tribological characteristics of AA6351/Si3N4 composites manufactured by stir casting. J Mater Res Technol 9:14662–14672. https://doi.org/10.1016/j.jmrt.2020.09.128

    Article  CAS  Google Scholar 

  14. Alagarsamy SV, Raveendran P, Ravichandran M (2020) Investigation of material removal rate and tool wear rate in spark erosion machining of Al-Fe-Si alloy composite using Taguchi coupled TOPSIS approach. Silicon. https://doi.org/10.1007/s12633-020-00596-x

  15. Pazhouhanfar Y, Eghbali B (2018) Microstructural characterization and mechanical properties of TiB2 reinforced Al6061 matrix composites produced using stir casting process. Mater Sci Eng A 710:172–180. https://doi.org/10.1016/j.msea.2017.10.087

    Article  CAS  Google Scholar 

  16. Mohanavel V, Rajan K, Ravichandran M (2016) Synthesis, characterization and properties of stir cast AA6351-aluminium nitride (AlN) composites. J Mater Res 31. https://doi.org/10.1557/jmr.2016.460

  17. Ezatpour HR, Torabi-Parizi M, Sajjadi SA (2013) Microstructure and mechanical properties of extruded Al/Al 2O3 composites fabricated by stir-casting process. Trans Nonferrous Met Soc China (English Ed) 23:1262–1268. https://doi.org/10.1016/S1003-6326(13)62591-1

    Article  CAS  Google Scholar 

  18. Akbari MK, Baharvandi HR, Mirzaee O (2014) Investigation of particle size and reinforcement content on mechanical properties and fracture behavior of A356-Al2O3 composite fabricated by vortex method. J Compos Mater 48:3315–3330. https://doi.org/10.1177/0021998313507618

    Article  CAS  Google Scholar 

  19. Ravi Kumar K, Pridhar T, Sree Balaji VS (2018) Mechanical properties and characterization of zirconium oxide (ZrO2) and coconut shell ash(CSA) reinforced aluminium (Al 6082) matrix hybrid composite. J Alloys Compd 765:171–179. https://doi.org/10.1016/j.jallcom.2018.06.177

    Article  CAS  Google Scholar 

  20. Ashok Kumar B, Murugan N (2012) Metallurgical and mechanical characterization of stir cast AA6061-T6-AlNp composite. Mater Des 40:52–58. https://doi.org/10.1016/j.matdes.2012.03.038

    Article  CAS  Google Scholar 

  21. Inegbenebor AO, Bolu CA, Babalola PO, Inegbenebor AI, Sunday FO (2016) Influence of the grit size of silicon carbide particles on the mechanical and electrical properties of stir casting aluminum matrix composite material. Silicon. 8:573–578. https://doi.org/10.1007/s12633-015-9305-8

    Article  CAS  Google Scholar 

  22. Sanesh K, Shiam Sunder S, Radhika N (2017) Effect of reinforcement content on the adhesive wear behaviour of Cu10Sn5Ni/Si3N4 composites produced by stir casting. Int J Miner Metall Mater 24:1052–1060. https://doi.org/10.1007/s12613-017-1495-1

    Article  CAS  Google Scholar 

  23. Muralidharan N, Chockalingam K, Dinaharan I, Kalaiselvan K (2018) Microstructure and mechanical behavior of AA2024 aluminum matrix composites reinforced with in situ synthesized ZrB2 particles. J Alloys Compd 735:2167–2174. https://doi.org/10.1016/j.jallcom.2017.11.371

    Article  CAS  Google Scholar 

  24. Esmaily M, Mortazavi N, Svensson JE, Halvarsson M, Jarfors AEW (2016) On the microstructure and corrosion behavior of AZ91 / SiC composites produced by rheocasting. Mater Chem Phys 180:29–37. https://doi.org/10.1016/j.matchemphys.2016.05.016

    Article  CAS  Google Scholar 

  25. Rajan HBM, Ramabalan S, Dinaharan I, Vijay SJ (2013) Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites. Mater Des 44:438–445. https://doi.org/10.1016/j.matdes.2012.08.008

    Article  CAS  Google Scholar 

  26. Candan S (2009) An investigation on corrosion behaviour of pressure infiltrated Al – Mg alloy / SiC p composites. Corros Sci 51:1392–1398. https://doi.org/10.1016/j.corsci.2009.03.025

    Article  CAS  Google Scholar 

  27. Kumar KR, Kiran K, Sreebalaji VS (2017) Micro structural characteristics and mechanical behaviour of aluminium matrix composites reinforced with titanium carbide. J Alloys Compd 723:795–801. https://doi.org/10.1016/j.jallcom.2017.06.309

    Article  CAS  Google Scholar 

  28. Lakshmi B, Morshed M, Nouri JM, Brabazon D, Naher S (2018) Mechanical properties of graphene oxide reinforced aluminium matrix composites. Compos Part B 145:136–144. https://doi.org/10.1016/j.compositesb.2018.03.022

    Article  CAS  Google Scholar 

  29. Sajjadi SA, Ezatpour HR, Parizi MT (2012) Comparison of microstructure and mechanical properties of A356 aluminum alloy / Al 2 O 3 composites fabricated by stir and compo-casting processes. Mater Des 34:106–111. https://doi.org/10.1016/j.matdes.2011.07.037

    Article  CAS  Google Scholar 

  30. Marichamy S, Saravanan M, Ravichandran M, Veerappan G (2016) Parametric optimization of EDM process on α–β brass using Taguchi approach. Russ J Non-Ferrous Met 57. https://doi.org/10.3103/S1067821216060109

  31. Kumar S, Ramanathan S, Sundarrajan S (2015) Synthesis, microstructural and mechanical properties of ex situ zircon particles (ZrSiO4) reinforced Metal Matrix Composites ( MMCs ): a review, J Mater Res Technol 4:333–347. https://doi.org/10.1016/j.jmrt.2015.03.003

  32. Rajmohan T, Palanikumar K, Ranganathan S (2013) Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Trans Nonferrous Met Soc China 23:2509–2517. https://doi.org/10.1016/S1003-6326(13)62762-4

    Article  CAS  Google Scholar 

  33. Baradeswaran A, Perumal AE (2014) Composites : part B Wear and mechanical characteristics of Al 7075 / graphite composites. Compos Part B 56:472–476. https://doi.org/10.1016/j.compositesb.2013.08.073

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the K.Ramakrishnan College of Engineering, Trichy, Tamil Nadu, India for the support rendered to this work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [V. Mohanavel].

Methodology: [V. Mohanavel].

Formal analysis and investigation: [V. Mohanavel], [M.Ravichandran].

Writing - original draft preparation: [V. Mohanavel];

Writing - review and editing: [M.Ravichandran].

Corresponding author

Correspondence to V. Mohanavel.

Ethics declarations

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

Consent was obtained from all the authors for the publication of this manuscript.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanavel, V., Ravichandran, M. Optimization of Parameters to Improve the Properties of AA7178/Si3N4 Composites Employing Taguchi Approach. Silicon 14, 1381–1394 (2022). https://doi.org/10.1007/s12633-020-00917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00917-0

Keywords

Navigation