Skip to main content
Log in

On Periodic Groups Isospectral to \( A_{7} \). II

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let \( G \) be a periodic group and let \( \omega(G) \) be the spectrum of \( G \). We prove that if \( G \) is isospectral to \( A_{7} \), the alternating group of degree \( 7 \) (i.e., \( \omega(G) \) is equal to the spectrum of \( A_{7} \)); then \( G \) has a finite nonabelian simple subgroup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brandl R. and Shi W., “Finite groups whose element orders are consecutive integers,” J. Algebra, vol. 2, no. 143, 388–400 (1991).

    Article  MathSciNet  Google Scholar 

  2. Mamontov A. S., “On periodic groups isospectral to \( A_{7} \),” Sib. Math. J., vol. 61, no. 1, 109–117 (2020).

    Article  Google Scholar 

  3. The GAP Group, GAP—Groups, Algorithms, and Programming. Version 4.11.0 (2019). http://www.gap-system.org

    Google Scholar 

  4. Shunkov V. P., “On periodic groups with an almost regular involution,” Algebra and Logic, vol. 11, no. 4, 260–272 (1972).

    Article  MathSciNet  Google Scholar 

  5. Sanov I. N., “Solution of Burnside’s problem for exponent 4,” Leningrad. Gos. Univ. Uchen. Zap. Ser. Mat. Nauk, vol. 10, no. 55, 166–170 (1940).

    MathSciNet  MATH  Google Scholar 

  6. Higman G., “Groups and rings having automorphisms without non-trivial fixed elements,” J. Lond. Math. Soc., no. 32, 321–334 (1957).

    Article  MathSciNet  Google Scholar 

  7. Holt D. F. and Plesken W., Perfect Groups, Clarendon and Oxford University, New York (1989).

    MATH  Google Scholar 

  8. Mamontov A. S. and Jabara E., “Recognizing \( L_{3}(4) \) by the set of element orders in the class of all groups,” Algebra and Logic, vol. 54, no. 4, 279–282 (2015).

    Article  MathSciNet  Google Scholar 

  9. Mazurov V. D., “Infinite groups with Abelian centralizers of involutions,” Algebra and Logic, vol. 39, no. 1, 42–49 (2000).

    Article  MathSciNet  Google Scholar 

  10. Zhurtov A. Kh., “On regular automorphisms of order \( 3 \) and Frobenius pairs,” Sib. Math. J., vol. 41, no. 2, 268–275 (2000).

    Article  MathSciNet  Google Scholar 

  11. Mamontov A. S., “Groups of exponent \( 12 \) without elements of order \( 12 \),” Sib. Math. J., vol. 54, no. 1, 114–118 (2013).

    Article  MathSciNet  Google Scholar 

  12. Hall P. and Kulatilaka C. R., “A property of locally finite groups,” J. Lond. Math. Soc., no. 39, 235–239 (1964).

    Article  MathSciNet  Google Scholar 

  13. Kargapolov M. I., “On a problem of O. Yu. Schmidt,” Sib. Mat. Zh., vol. 4, no. 1, 232–235 (1963).

    MathSciNet  MATH  Google Scholar 

  14. Lytkina D. V., Mazurov V. D., Mamontov A. S., and Jabara E., “Groups whose element orders do not exceed 6,” Algebra and Logic, vol. 53, no. 5, 365–376 (2014).

    Article  MathSciNet  Google Scholar 

  15. Mamontov A. S., “The Baer–Suzuki Theorem for groups of \( 2 \)-exponent \( 4 \),” Algebra and Logic, vol. 53, no. 5, 422–424 (2014).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The first author was supported by the Russian Foundation for Basic Research (Grant 18–31–20011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mamontov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamontov, A.S., Jabara, E. On Periodic Groups Isospectral to \( A_{7} \). II. Sib Math J 61, 1093–1101 (2020). https://doi.org/10.1134/S0037446620060105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446620060105

Keywords

UDC

Navigation