Skip to main content
Log in

Quantum codes do not fix isotropic errors

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we prove that quantum error correcting codes do not fix isotropic errors (Theorem 5), even assuming that their correction circuits do not introduce new errors. We say that a quantum code does not fix a quantum computing error if its application does not reduce the variance of the error. We also prove for isotropic errors that, if the correction circuit of a quantum code detects an error, the corrected logical m-qubit has uniform distribution (Theorem 3) and as a result, it already loses all the computing information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gaitan, F.: Quantum Error Correction and Fault Tolerant Quantum Computing. CRC Press, Boca Raton (2008)

    MATH  Google Scholar 

  2. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    Article  ADS  Google Scholar 

  3. Steane, A.M.: Multiple particle inference and quantum error correction. Proc. R. Soc. A 452, 2551 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. Gottesman, D.: Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology (1997)

  5. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Fellow, quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  Google Scholar 

  6. Shor, P.W.: Fault-tolerant quantum computation. Symposium on the Foundations of Computer Science, Los Alamitos, CA (1996)

  7. Preskill, J.: Reliable quantum computers. Proc. R. Soc. Lond. A 454, 385–410 (1998)

    Article  ADS  Google Scholar 

  8. Steane, A.M.: Active stabilization, quantum computation and quantum state synthesis. Phys. Rev. Lett. 78, 2252 (1997)

    Article  ADS  Google Scholar 

  9. Gottesman, D.: Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998)

    Article  ADS  Google Scholar 

  10. Gilbert, G., Hamrick, M., Weinstein, Y.S.: End-to-end fault tolerance. Quantum Inf. Process. 7, 263 (2008). https://doi.org/10.1007/s11128-008-0087-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Nakahara, M.: Frank Gaitan: quantum error correction and fault tolerant quantum computing. Quantum Inf. Process. 11, 629–631 (2012). https://doi.org/10.1007/s11128-011-0287-1

    Article  ADS  Google Scholar 

  12. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  13. Lacalle, J., Pozo Coronado, L.M.: Variance of the sum of independent quantum computing errors. Quantum Inf. Comput. 19(15–16), 1294–1312 (2019)

    MathSciNet  Google Scholar 

  14. Scott, A.J.: Probabilities of failure for quantum error correction. Quantum Inf. Process. 4, 399–431 (2005). https://doi.org/10.1007/s11128-005-0002-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Preskill, J.: Sufficient condition on noise correlations for scalable quantum computing. Quantum Inf. Comput. 13(3–4), 181–194 (2013)

    MathSciNet  Google Scholar 

  16. Gottesman, D.: Fault-tolerant quantum computation with constant overhead. Quantum Inf. Comput. 14(15), 1338–1372 (2014)

    MathSciNet  Google Scholar 

  17. Cross, A.W., Divincenzo, D.P., Terhal, B.M.: A comparative code study for quantum fault tolerance. Quantum Inf. Comput. 9(7), 541–572 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Hill, C.D., Fowler, A.G., Wang, D.S., Hollenberg, L.C.L.: Fault-tolerant quantum error correction code conversion. Quantum Inf. Comput. 13(5), 439–451 (2013)

    MathSciNet  Google Scholar 

  19. Duclos-Cianci, G., Poulin, D.: Fault-tolerant renormalization group decoder for abelian topological codes. Quantum Inf. Comput. 14(9), 721–740 (2014)

    MathSciNet  Google Scholar 

  20. Hocker, D., Zheng, Y., Kosut, R., Brun, T., Rabitz, H.: Survey of control performance in quantum information processing. Quantum Inf. Process. 15, 4361–4390 (2016). https://doi.org/10.1007/s11128-016-1406-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hocker, D., Kosut, R., Rabitz, H.: PEET: a Matlab tool for estimating physical gate errors in quantum information processing systems. Quantum Inf. Process. 15, 3489–3518 (2016). https://doi.org/10.1007/s11128-016-1337-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Aliferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6, 97–165 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Wang, D.S., Fowler, A.G., Stephens, A.M., Hollenberg, L.C.L.: Threshold error rates for the toric and planar codes. Quantum Inf. Comput. 10(5), 456–469 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Aggarwal, V., Calderbank, A.R., Gilbert, G., Weinstein, Y.S.: Volume thresholds for quantum fault tolerance. Quantum Inf. Process. 9, 541–549 (2010). https://doi.org/10.1007/s11128-010-0181-2

    Article  MathSciNet  MATH  Google Scholar 

  25. Criger, B., Terhal, B.: Noise thresholds for the [4,2,2]-concatenated toric code. Quantum Inf. Comput. 16(15), 1261–1281 (2016)

    MathSciNet  Google Scholar 

  26. Ozen, M., Guzeltepe, M.: Quantum codes from codes over Gaussian integers with respect to the Mannheim metric. Quantum Inf. Comput. 12(9), 813–819 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Li, R., Zou, F., Liu, Y., Xu, Z.: Hermitian dual containing BCH codes and construction of new quantum codes. Quantum Inf. Comput. 13(1), 21–35 (2013)

    MathSciNet  Google Scholar 

  28. Chen, J., Chen, Y., Huang, Y., Feng, C.: New optimal asymmetric quantum codes and quantum convolutional codes derived from constacyclic codes. Quantum Inf. Process. 18, 40 (2019). https://doi.org/10.1007/s11128-018-2156-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. La Guardia, G.G.: Asymmetric quantum Reed–Solomon and generalized Reed–Solomon codes. Quantum Inf. Process. 11, 591–604 (2012). https://doi.org/10.1007/s11128-011-0269-3

    Article  MathSciNet  MATH  Google Scholar 

  30. Boulant, N., Pravia, M.A., Fortunato, E.M., Havel, T.F., Cory, D.G.: Experimental concatenation of quantum error correction with decoupling. Quantum Inf. Process. 1, 135–144 (2002). https://doi.org/10.1023/A:1019623208633

    Article  Google Scholar 

  31. Evans, Z.W.E., Stephens, A.M.: Optimal correction of concatenated fault-tolerant quantum codes. Quantum Inf. Process. 11, 1511–1521 (2012). https://doi.org/10.1007/s11128-011-0312-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Dias de Albuquerque, C., Palazzo Jr., R., Brandani da Sil, E.: Families of codes of topological quantum codes from tessellations tessellations 4i+2,2i+1, 4i,4i, 8i-4,4 and 12i-6,3. Quantum Inf. Comput. 14(15), 1424–1440 (2014)

    MathSciNet  Google Scholar 

  33. Naghipour, A., Jafarizadeh, M.A., Shahmorad, S.: Topological quantum codes from self-complementary self-dual graphs. Quantum Inf. Process. 14, 4057–4066 (2015). https://doi.org/10.1007/s11128-015-1115-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Greenbaum, D., Dutton, Z.: Modeling coherent errors in quantum error correction. Quantum Sci. Technol. 3(1), 015007 (2018)

    Article  ADS  Google Scholar 

  35. Bravyi, S., Englbrecht, M., Konig, R., Peard N.: Correcting coherent errors with surface codes. npj Quantum Inf. 4, art. 55 (2018)

  36. Piltz, C., Sriarunothai, T., Varón, A.F., Wunderlich, C.: A trapped-ion-based quantum byte with \(10^{-5}\) next-neighbour cross-talk. Nat. Commun. 5, art. 4679 (2014)

  37. Buterakos, D., Throckmorton, R.E., Das Sarma, S.: Crosstalk error correction through dynamical decoupling of single-qubit gates in capacitively coupled singlet-triplet semiconductor spin qubits. Phys. Rev. B 97(4), 045431 (2018)

    Article  ADS  Google Scholar 

  38. Zurek, W.H.: Decoherence and the transition from quantum to classical—revisited. In: Duplantier, B., Raimond, J.M., Rivasseau, V. (eds.) Quantum Decoherence Progress in Mathematical Physics, vol. 48. Birkhäuser, Basel (2006)

    Google Scholar 

  39. Bennet, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed state entanglement and quantum error correction. Los Alamos Physics Preprint Archive. http://xxx.lanl.gov/abs/quant-ph/9909058 (1999)

  40. Laflamme, R., Miquel, C., Paz, J.-P., Zurek, W.H.: Perfect quantum error correction codes. Phys. Rev. Lett. 77, 198 (1996). Los Alamos Physics Preprint Archive. http://xxx.lanl.gov/abs/quant-ph/9602019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lacalle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The values of the integrals that have been used throughout the article are included in this appendix:

$$\begin{aligned} \begin{array}{l} \displaystyle \int _{0}^{\pi }\sin ^{k}(\theta )\mathrm{d}\theta = \left\{ \begin{array}{l} \displaystyle 2\,\frac{(k-1)!!}{k!!}\quad \quad k=1,\,3,\,5,\,\,\dots \\ \\ \displaystyle \pi \,\frac{(k-1)!!}{k!!}\quad \quad k=2,\,4,\,6,\,\,\dots \end{array}\right. , \\ \\ \displaystyle \int _{0}^{\frac{\pi }{2}}\cos ^a(\theta )\,\sin ^b(\theta )\,\mathrm{d}\theta = \left\{ \begin{array}{l} \displaystyle \frac{\pi }{2}\frac{(a-1)!!\,(b-1)!!}{(a+b)!!}\quad \text{ if } \text{ a } \text{ and } \text{ b } \text{ are } \text{ even } \\ \\ \displaystyle \frac{(a-1)!!\,(b-1)!!}{(a+b)!!}\quad \text{ in } \text{ another } \text{ case } \end{array}\right. , \\ \\ \displaystyle \int _{0}^{\pi }\frac{\sin ^{2d-2}(\theta _0)}{(1+\sigma ^2-2\sigma \cos (\theta _0))^d}\mathrm{d}\theta _0= \frac{(2d-3)!!}{(2d-2)!!}\frac{\pi }{(1-\sigma ^2)}\quad \quad d=1,\,2,\,3,\,\,\dots \, , \\ \\ \displaystyle \int _{0}^{\pi }\frac{\cos (\theta _0)\sin ^{2d-2}(\theta _0)}{(1+\sigma ^2-2\sigma \cos (\theta _0))^d}\mathrm{d}\theta _0= \frac{(2d-3)!!}{(2d-2)!!}\frac{\sigma }{(1-\sigma ^2)}\pi \quad \quad d=1,\,2,\,3,\,\,\dots \, , \\ \\ \displaystyle \int _{0}^{\pi }\frac{\sin ^{2d}(\theta _0)}{(1+\sigma ^2-2\sigma \cos (\theta _0))^d}\mathrm{d}\theta _0= \frac{(2d-1)!!}{(2d)!!}\pi \quad \quad d=0,\,1,\,2,\,\,\dots \, , \\ \\ \displaystyle \int _{0}^{\pi }\frac{\cos ^2(\theta _0)\sin ^{2d-2}(\theta _0)}{(1+\sigma ^2-2\sigma \cos (\theta _0))^d}\mathrm{d}\theta _0 = \pi \,\frac{(2d-3)!!}{(2d)!!}\,\frac{1+(2d-1)\sigma ^2}{1-\sigma ^2} \ \ d=1,\,2,\,3,\,\,\dots \, . \\ \\ \end{array} \end{aligned}$$

Starting from the first integral, the surface of a unit sphere of arbitrary even (2d) or odd (\(2d-1\)) dimension can be calculated:

$$\begin{aligned}&\begin{array}{ccl} |\mathcal{S}_{2d}| &{} = &{} \displaystyle \int _0^{\pi }\cdots \int _0^{\pi }\int _0^{2\pi }\sin ^{2d-1}(\theta _0)\,\cdots \,\sin ^{1}(\theta _{2d-2})\ \mathrm{d}\theta _0\,\cdots \,\mathrm{d}\theta _{2d-2}\mathrm{d}\theta _{2d-1} \\ \\ &{} = &{} \displaystyle 2\frac{(2d-2)!!}{(2d-1)!!}\ \frac{(2d-3)!!}{(2d-2)!!}\pi \ 2\frac{(2d-4)!!}{(2d-3)!!}\ \cdots \ \frac{(2-1)!!}{2!!}\pi \ 2\frac{(1-1)!!}{1!!}\ 2\pi \\ \\ &{} = &{} \displaystyle \frac{2(2\pi )^d}{(2d-1)!!}, \\ \end{array} \\&\begin{array}{ccl} |\mathcal{S}_{2d-1}| &{} = &{} \displaystyle \int _0^{\pi }\cdots \int _0^{\pi }\int _0^{2\pi }\sin ^{2d-2}(\theta _0)\,\cdots \,\sin ^{1}(\theta _{2d-3})\ \mathrm{d}\theta _0\,\cdots \,\mathrm{d}\theta _{2d-3}\mathrm{d}\theta _{2d-2} \\ \\ &{} = &{} \displaystyle \frac{(2d-3)!!}{(2d-2)!!}\pi \ 2\frac{(2d-4)!!}{(2d-3)!!}\ \cdots \ \frac{(2-1)!!}{2!!}\pi \ 2\frac{(1-1)!!}{1!!}\ 2\pi \\ \\ &{} = &{} \displaystyle \frac{(2\pi )^d}{(2d-2)!!}. \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacalle, J., Pozo-Coronado, L.M. & Fonseca de Oliveira, A.L. Quantum codes do not fix isotropic errors. Quantum Inf Process 20, 37 (2021). https://doi.org/10.1007/s11128-020-02980-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02980-3

Keywords

Navigation