Skip to main content

Advertisement

Log in

Active Tuning from Narrowband to Broadband Absorbers Using a Sub-wavelength VO2 Embedded Layer

  • Published:
Plasmonics Aims and scope Submit manuscript

A Correction to this article was published on 04 February 2021

This article has been updated

Abstract

Metamaterial perfect absorbers (MPAs) with dynamic thermal tuning features are able to control the absorption performance of the resonances, providing diverse applications spanning from optical switches and filters to modulators. In this paper, we propose an MPA with diverse functionalities enabled by vanadium dioxide (VO2) embedded in a metal-dielectric plasmonic structure. For the initial design purpose, a silicon (Si) nanograting on a silver (Ag) mirror is proposed to have multiple resonant responses in the near infrared (NIR) region. Then, the insertion of a thin VO2 layer at the right position enables the design to act as an on/off switch and resonance tuner. In the insulator phase of VO2, in which the permittivity data of VO2 is similar to that of Si, a double strong resonant behavior is achieved within the NIR region. By increasing the temperature, the state of VO2 transforms from insulator to metallic so that the absorption bands turn into three distinct resonant peaks with close spectral positions. Upon this transformation, a new resonance emerges and the existing resonance features experience blue/red shifts in the spectral domain. The superposition of these peaks makes the overall absorption bandwidth broad. Although Si has a small thermo-optic coefficient, owing to strong light confinement in the ultrasmall gaps, a substantial tuning can be achieved within the Si nanogratings. Therefore, the proposed hybrid design can provide multi-resonance tunable features to cover a broad range and can be a promising strategy for the design of linearly thermal-tunable and broadband MPAs. Owing to the proposed double tuning feature, the resonance wavelengths exhibits great sensitivity to temperature, covering a broad wavelength range\(.\) Overall, the proposed design strategy demonstrates diverse functionalities enabled by the integration of a thin VO2 layer with plasmonic absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Boardman A (2010) Pioneers in metamaterials: John Pendry and Victor Veselago. J Opt 13(2):020401

    Article  Google Scholar 

  2. Tretyakov S, Urbas A, Zheludev N (2017) The century of metamaterials. J Opt 19(8):080404

    Article  Google Scholar 

  3. Guo CF, Sun T, Cao F, Liu Q, Ren Z (2014) Metallic nanostructures for light trapping in energy-harvesting devices. Light: Science & Applications 3(4)

  4. Zhu J, Zhang L, Jiang S, Ou J, Liu QH (2020) Selective light trapping of plasmonic stack metamaterials by circuit design. Nanoscale 12(3):2057–2062

    Article  CAS  Google Scholar 

  5. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801):977–980

    Article  CAS  Google Scholar 

  6. Li Z, Mutlu M, Ozbay E (2013) Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission. J Opt 15(2):023001

    Article  CAS  Google Scholar 

  7. Zhu R, Wu X, Hou Y, Zheng G, Zhu J, Gao F (2018) Broadband asymmetric light transmission at metal/dielectric composite grating. Sci Rep 8(1)

  8. Fang A, Koschny T, Soukoulis CM (2010) Lasing in metamaterial nanostructures. J Opt 12(2):024013

    Article  Google Scholar 

  9. Hoffman AJ, Alekseyev L, Howard SS, Franz KJ, Wasserman D, Podolskiy VA, Gmachl C (2007) Negative refraction in semiconductor metamaterials. Nat Mater 6(12):946–950

    Article  CAS  Google Scholar 

  10. Kraftmakher GA, Butylkin VS (2003) A composite medium with simultaneously negative permittivity and permeability. Tech Phys Lett 29(3):230–232

    Article  CAS  Google Scholar 

  11. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521

    Article  CAS  Google Scholar 

  12. Landy NI, Bingham CM, Tyler T, Jokerst N, Smith DR, Padilla WJ (2009) Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys Rev B 79(12)

  13. Ji C, Lee K, Xu T, Zhou J, Park HJ, Guo LJ (2017) Engineering light at the nanoscale: structural color filters and broadband perfect absorbers. Adv Opt Mater 5(20):1700368

    Article  Google Scholar 

  14. Khan AD, Khan AD, Khan SD, Noman M (2018) Light absorption enhancement in tri-layered composite metasurface absorber for solar cell applications. Opt Mater 84:195–198

    Article  CAS  Google Scholar 

  15. Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245

    Article  CAS  Google Scholar 

  16. Arquer FP, Mihi A, Konstantatos G (2015) Large-area plasmonic-crystal–hot-electron-based photodetectors. ACS Photonics 2(7):950–957

    Article  Google Scholar 

  17. Kong A, Cai B, Shi P, Yuan X (2019) Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling. Opt Express 27(21):30102

    Article  CAS  Google Scholar 

  18. Ghobadi A, Hajian H, Gokbayrak M, Dereshgi SA, Toprak A, Butun B, Ozbay E (2017) Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity. Opt Express 25(22):27624

    Article  CAS  Google Scholar 

  19. Lei L, Li S, Huang H, Tao K, Xu P (2018) Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt Express 26(5):5686

    Article  CAS  Google Scholar 

  20. Cheng Y, Zou H, Yang J, Mao X, Gong R (2018) Dual and broadband terahertz metamaterial absorber based on a compact resonator structure. Opt Mater Express 8(10):3104

    Article  CAS  Google Scholar 

  21. Wang B, Tang C, Niu Q, He Y, Chen R (2019) A broadband terahertz metamaterial absorber enabled by the simple design of a rectangular-shaped resonator with an elongated slot. Nanoscale Advances 1(9):3621–3625

    Article  CAS  Google Scholar 

  22. Zhang J, Wu X, Liu L, Huang C, Chen X, Tian Z, Zhang W (2019) Ultra-broadband microwave metamaterial absorber with tetramethylurea inclusion. Opt Express 27(18):25595

    Article  CAS  Google Scholar 

  23. Zhao J, Wei S, Wang C, Chen K, Zhu B, Jiang T, Feng Y (2018) Broadband microwave absorption utilizing water-based metamaterial structures. Opt Express 26(7):8522

    Article  CAS  Google Scholar 

  24. Fann C, Zhang J, Elkabbash M, Donaldson WR, Campbell EM, Guo C (2019) Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms. Opt Express 27(20):27917

    Article  CAS  Google Scholar 

  25. Ghobadi A, Hajian H, Rashed AR, Butun B, Ozbay E (2018) Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth. Photonics Research 6(3):168

    Article  CAS  Google Scholar 

  26. Zou Y, Cao J, Gong X, Qian R, An Z (2019) Ultrathin and electrically tunable metamaterial with nearly perfect absorption in mid-infrared. Appl Sci 9(16):3358

    Article  CAS  Google Scholar 

  27. Abb M, Albella P, Aizpurua J, Muskens OL (2011) All-optical control of a single plasmonic nanoantenna–ITO hybrid. Nano Lett 11(6):2457–2463

    Article  CAS  Google Scholar 

  28. Huang X, He W, Yang F, Ran J, Yang Q, Xie S (2019) Thermally tunable metamaterial absorber based on strontium titanate in the terahertz regime. Opt Mater Express 9(3):1377

    Article  CAS  Google Scholar 

  29. Chandra S, Franklin D, Cozart J, Safaei A, Chanda D (2018) Adaptive multispectral infrared camouflage. ACS Photonics 5(11):4513–4519

    Article  CAS  Google Scholar 

  30. Huang W, Yin X, Huang C, Wang Q, Miao T, Zhu Y (2010) Optical switching of a metamaterial by temperature controlling. Appl Phys Lett 96(26):261908

    Article  Google Scholar 

  31. Lee N, Kim T, Lim J, Chang I, Cho HH (2019) Metamaterial-selective emitter for maximizing infrared camouflage performance with energy dissipation. ACS Appl Mater Interfaces 11(23):21250–21257

    Article  CAS  Google Scholar 

  32. Liu H, Lu J, Wang XR (2017) Metamaterials based on the phase transition of VO2. Nanotechnology 29(2):024002

    Article  Google Scholar 

  33. Song Z, Wang K, Li J, Liu QH (2018) Broadband tunable terahertz absorber based on vanadium dioxide metamaterials. Opt Express 26(6):7148

    Article  CAS  Google Scholar 

  34. Eaton M, Catellani A, Calzolari A (2018) VO2 as a natural optical metamaterial. Opt Express 26(5):5342

    Article  CAS  Google Scholar 

  35. Sharma Y, Tiruveedhula VA, Muth JF, Dhawan A (2015) VO_2 based waveguide-mode plasmonic nano-gratings for optical switching. Opt Express 23(5):5822

    Article  CAS  Google Scholar 

  36. Zhu Z, Evans PG, Haglund RF, Valentine JG (2017) Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett 17(8):4881–4885

    Article  CAS  Google Scholar 

  37. Withayachumnankul W, Shah CM, Fumeaux C, Ung BS, Padilla WJ, Bhaskaran M, Sriram S (2014) Plasmonic resonance toward terahertz perfect absorbers. ACS Photonics 1(7):625–630

    Article  CAS  Google Scholar 

  38. Cai W, Fan Y, Huang X, Fu Q, Yang R, Zhu W, Zhang F (2019) Electromagnetically induced transparency in all-dielectric metamaterials: Coupling between magnetic Mie resonance and substrate resonance. Phys Rev A 100(5)

  39. Zhao L, Yang X, Niu Q, He Z, Dong S (2019) Linearly thermal-tunable near-infrared ultra-narrowband metamaterial perfect absorber with low power and a large modulation depth based on a four-nanorod-coupled a-silicon resonator. Opt Lett 44(15):3885

    Article  CAS  Google Scholar 

  40. Kehn MN, Lai WY (2020) Modal analysis of gratings with conducting strip-loaded bars and sandwiched between multiple dielectric layers. IEEE Trans Antennas Propag 68(6):5027–5032

    Article  Google Scholar 

  41. Nasr MH, Othman MA, Eshrah IA, Abuelfadl TM (2017) Solution of cavity resonance and waveguide scattering problems using the eigenmode projection technique. J Appl Phys 121(14):143105

    Article  Google Scholar 

  42. Rosenblatt D, Sharon A, Friesem A (1997) Resonant grating waveguide structures. IEEE J Quantum Electron 33(11):2038–2059

    Article  CAS  Google Scholar 

  43. Lumerical F. Solutions (2016)

  44. Dicken MJ, Aydin K, Pryce IM, Sweatlock LA, Boyd EM, Walavalkar S, Atwater HA (2009) Frequency tunable near-infrared metamaterials based on VO_2 phase transition. Opt Express 17(20):18330

    Article  CAS  Google Scholar 

  45. Hohlfeld D, Zappe H (2004) An all-dielectric tunable optical filter based on the thermo-optic effect. J Opt A: Pure Appl Opt 6(6):504–511

    Article  Google Scholar 

  46. Zhao L, Yang X, Niu Q, He Z, Dong S (2019) Linearly thermal-tunable near-infrared ultra-narrowband metamaterial perfect absorber with low power and a large modulation depth based on a four-nanorod-coupled a-silicon resonator. Opt Lett 44(15): 3885

  47. Smith DR, Vier DC, Koschny T, Soukoulis CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71(3)

  48. Bai Y, Zhao L, Ju D, Jiang Y, Liu L (2015) Wide angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial. Opt Express 23(7):8670

Download references

Funding

One of the authors (A.E.S.) received partial financial support by Narodowe Centrum Nauki, Grant No. ~2015/17/B/ST3/00118 and TUBITAK under program 2221.

Author information

Authors and Affiliations

Authors

Contributions

First author (A.K.O.) carried out the modeling, design, and simulations. H.H. and B.K. and A.E.S. and A.G. assisted in theoretical review and simulations. E.O. supervised the study. All the authors contributed in the results, discussions, and paper writing.

Corresponding author

Correspondence to Ataollah Kalantari Osgouei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: "The name of the fourth author is written reversely. The complete name of the fourth author is as follows: “Andriy E.” as the first name, while “Serebryannikov” is his last name."

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalantari Osgouei, A., Hajian, H., Khalichi, B. et al. Active Tuning from Narrowband to Broadband Absorbers Using a Sub-wavelength VO2 Embedded Layer. Plasmonics 16, 1013–1021 (2021). https://doi.org/10.1007/s11468-020-01370-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01370-w

Keywords

Navigation