Skip to main content
Log in

Comparison of Three Different Satellite-Based Approaches for Aboveground Biomass Estimation

  • Original Article
  • Published:
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science Aims and scope Submit manuscript

Abstract

Effective estimation of crop yield on a regional scale in a short time with low cost would only be possible utilizing remote sensing. Several approaches have been proposed based on remotely sensed data for estimating Aboveground Biomass (AGB). In this study, three satellite-based approaches, including Radiation Use Efficiency (RUE). The soil water atmosphere plant (SWAP) model, and FAO33, were evaluated in the irrigated wheat and barley fields in the Qazvin irrigation network, Iran. To this end, the leaf area index (LAI) and relative evapotranspiration (ETrel) were extracted from the Landsat data and incorporated into the methods. A comparative analysis was undertaken to evaluate the performance of the satellite-based approaches using percent absolute error (PAE). By updating SWAP with satellite-derived LAI and surface incoming solar radiation, the PAE decreased significantly. Results of different Spectral Indices (SIs) in the RUE method showed that NDVI performed best with PAE of 1.52 percent and RMSE of 664.6 kg ha−1. Also, the RUE method with RMSE of 664.6 kg ha−1 had 4.7 and 23.8 lower PAE compared to the SWAP (RMSE = 2221.4 kg ha−1) and FAO33 (RMSE = 4394.2 kg ha−1), respectively. However, this was not the only criteria for a well-performed method, because earlier AGB forecast was only feasible by making use of SWAP since the satellite-derived parameters were only incorporated into the model about one month before the harvest.

Zusammenfassung

Vergleich von drei auf Satellitenbildern basierten Verfahren zur Abschätzung der oberirdischen Biomasse. Nur die Fernerkundung eignet sich für eine effektive, schnelle und preisgünstige Schätzung der Ernteerträge auf regionaler Ebene. Für die Schätzung der oberirdischen Biomasse (aboveground biomass, AGB) wurden bislang eine ganze Reihe von auf fernerkundlichen Daten basierenden Ansätze vorgeschlagen. In dieser Studie wurden drei dieser Ansätze, und zwar die RUE Methode (radiation use efficiency), das SWAP (Boden Wasser Atmosphäre Pflanze / soil water atmosphere plant) - Modell und die FAO33-Methode anhand von bewässerten Weizen- und Gerstenfeldern in Qazvin, Iran, verglichen und bewertet. Zu diesem Zweck wurden der Blattflächenindex (leaf area index, LAI) und die relative Evapotranspiration (ETrel) aus Landsat-Daten berechnet und in die Methoden integriert. Eine vergleichende Analyse wurde durchgeführt, um die Leistung der satellitengestützten Ansätze unter Verwendung des prozentualen absoluten Fehlers (percent absolute error, PAE) zu bewerten. Durch Verwendung des satellitengestützten LAI und die Berücksichtigung der Sonneneinstrahlung auf der Geländeoberfläche konnte die Genauigkeit des SWAP-Modells verbessert werden, was sich durch die signifikante Abnahme des PAE belegen ließ. Der Vergleich der Signifikanz verschiedener Spektralindizes (SIs) bei der RUE-Methode zeigte, dass der NDVI am besten mit einem PAE von 1,52 Prozent und einem RMSE von 664,6 kg ha−1 abschnitt. Auch die RUE-Methode mit einem RMSE von 664,6 kg ha−1 hatte im Vergleich zum SWAP-Modell (RMSE = 2221,4 kg ha−1) und zur FAO33-Methode (RMSE = 4394,2 kg ha−1) mit 4,7 bzw. 23,8 einen kleineren PAE. Ein weiteres Kriterium für diese gut funktionierende Methode ist die frühere AGB-Prognose, die nur unter Verwendung von SWAP durchführbar war, da die vom Satelliten abgeleiteten Parameter bis etwa einen Monat vor der Ernte in das Modell aufgenommen werden konnten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300(9):D05109

    Google Scholar 

  • Asrar G, Fuchs M, Kanemasu ET, Hatfield JL (1984) Estimating absorbed photosynthetically active radiation and leaf area index from spectral reflectance in wheat. Agron J 76:300–306

    Article  Google Scholar 

  • Awad MM (2019) Toward precision in crop yield estimation using remote sensing and optimization techniques. Agriculture 9(3):54

    Article  Google Scholar 

  • Bai T, Wang S, Meng W, Zhang N, Wang T, Chen Y, Mercatoris B (2019) Assimilation of remotely-sensed LAI into WOFOST model with the SUBPLEX algorithm for improving the field-scale jujube yield forecasts. Remote Sens 11(16):1945

    Article  Google Scholar 

  • Bastiaanssen WG, Menenti M, Feddes RA, Holtslag AAM (1998) A remote sensing surface energy balance algorithm for land (SEBAL). 1 .Formulation. J Hydrol 212:198–212

    Article  Google Scholar 

  • Biggs TW, Marshall M, Messina A (2016) Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison. Water Resour Res 52(9):7311–7326

    Article  Google Scholar 

  • De Silva OF, Lilla MR, Albuquerque FJL (2018) Large-scale spatial modeling of crop coefficient and biomass production in agroecosystems in southeast Brazil. Horticulture 4(4):44

    Article  Google Scholar 

  • Dong T, Meng J, Shang J, Liu J, Wu B, Huffman T (2015) Modified vegetation indices for estimating crop fraction of absorbed photosynthetically active radiation. Int J Remote Sens 36(12):3097–3113

    Article  Google Scholar 

  • Dorenboos J, Kassam AH (1979) Yield response to water. FAO Irrig. and Drain. Paper No. 33.

  • Dorigo WA, Zurita-Milla R, de Wit AJ, Brazile J, Singh R, Schaepman ME (2007) A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int J Appl Earth Obs Geoinform 9(2):165–193

    Google Scholar 

  • Dwivedi M, Saxena S, Ray SS (2019) Assessment of rice biomass production and yield using semi-physical approach and remotely sensed. Int Arch Photogramm Remote Sens XLII-3/W6:217–222

    Article  Google Scholar 

  • Farshi AA, Feyen J, Belmans C, De Wijngaert K (1987) Modelling of yield of winter wheat as a function of soil water availability. Agric Water Manag 12(4):323–339

    Article  Google Scholar 

  • Feddes RA (1971) Water, heat and crop growth. PhD thesis, Wageningen Agricultural University, The Netherlands.

  • Field CB, Randerson JT, Malmström CM (1995) Global net primary production: combining ecology and remote sensing. Remote Sens f Environ 51(1):74–88

    Article  Google Scholar 

  • Gallo KP, Daughtry CS, Wiegand CL (1993) Errors in measuring absorbed radiation and computing crop radiation use efficiency. Agron J 85(6):1222–1228

    Article  Google Scholar 

  • Higuchi A, Kondoh A, Kishi S (2000) Relationship among the surface albedo, spectral reflectance of canopy, and evaporative fraction at grassland and paddy field. Adv Space Res 26(7):1043–1046

    Article  Google Scholar 

  • Huang J, Ma H, Liu J, Zhu D, Zhang X (2013) Regional winter wheat yield estimation by assimilating MODIS ET and LAI products into SWAP model. In: Agro-Geoinformatics (Agro-Geoinformatics), 2013 Second International Conference, IEEE, pp 454–459

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309

    Article  Google Scholar 

  • Jiang L, Islam S (1999) A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations. Geophys Res Lett 26(17):2773–2776

    Article  Google Scholar 

  • Jin X, Li Z, Feng H, Ren Z, Li S (2020) Estimation of maize yield by assimilating biomass and canopy cover derived from hyperspectral data into the AquaCrop model. Agric Water Manag 227:105846

    Article  Google Scholar 

  • Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004) Review of methods for in situ leaf area index determination: part I. Theories, sensors and hemispherical photography. Agric For Meteorol 121(1):19–35

    Article  Google Scholar 

  • Kaboosi K, Kaveh F (2012) Sensitivity analysis of FAO 33 crop water production function. Irrig Sci 30(2):89–100

    Article  Google Scholar 

  • Kroes JG, Van Dam JC (2003) Reference Manual SWAP version 3.03. (Ed). Alterra- report: Alterra Green WorldResearch. Wageningen University and Research Centre, Wageningen, pp 1–211

    Google Scholar 

  • Kumar M, Monteith JL (1981) Plants and the daylight spectrum. Remote Sens Crop Growth 5:133–144

    Google Scholar 

  • Kustas WP, Schmugge TJ, Humes KS, Jackson TJ, Parry R, Weltz MA, Moran MS (1993) Relationships between evaporative fraction and remotely sensed vegetation index and microwave brightness temperature for semiarid rangelands. J Appl Meteorol 32(12):1781–1790

    Article  Google Scholar 

  • Li H, Chen Z, Liu G, Jiang Z, Huang C (2017) Improving winter wheat yield estimation from the CERES-wheat model to assimilate leaf area index with different assimilation methods and spatio-temporal scales. Remote Sens 9(3):190

    Article  Google Scholar 

  • Lobell DB, Asner GP, Ortiz-Monasterio JI, Benning TL (2003) Remote sensing of regional crop production in the Yaqui Valley, Mexico: estimates and uncertainties. Agric Ecosyst Environ 94(2):205–220

    Article  Google Scholar 

  • Lobell DB, Ortiz-Monasterio JI, Asner GP, Naylor RL, Falcon WP (2005) Combining field surveys, remote sensing, and regression trees to understand yield variations in an irrigated wheat landscape. Agron J 97(1):241–249

    Article  Google Scholar 

  • Los SO, Pollack NH, Parris MT, Collatz GJ, Tucker CJ, Sellers PJ, Malmström CM, DeFries RS, Bounoua L, Dazlich DA (2000) A global 9-yr biophysical land surface dataset from NOAA AVHRR data. J Hydrometeorol 1(2):183–199

    Article  Google Scholar 

  • Mateos L, González-Dugo MP, Testi L, Villalobos FJ (2013) Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. I method validation. Agric Water Manag 125:81–91

    Article  Google Scholar 

  • Meng W, Tao FL, Shi WJ (2014) Corn yield forecasting in northeast china using remotely sensed spectral indices and crop phenology metrics. J Integr Agric 13(7):1538–1545

    Article  Google Scholar 

  • Mokhtari A, Noory H, Vazifedoust M (2018a) Improving crop yield estimation by assimilating LAI and inputting satellite-based surface incoming solar radiation into SWAP model. Agric For Meteorol 250:159–170

    Article  Google Scholar 

  • Mokhtari A, Noory H, Vazifedoust M (2018b) Performance of different surface incoming solar radiation models and their impacts on reference evapotranspiration. Water Resour Manag 32(9):3053–3070

    Article  Google Scholar 

  • Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecology 9(3):747–766

    Article  Google Scholar 

  • Monteith JL, Moss CJ (1977) Climate and the efficiency of crop production in Britain. Philos Trans R Soc Lond B 281(980):277–294

    Article  Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522

    Article  Google Scholar 

  • Novelli F, Spiegel H, Sandén T, Vuolo F (2019) Assimilation of sentinel-2 leaf area index data into a physically-based crop growth model for yield estimation. Agronomy 9(5):255

    Article  Google Scholar 

  • Nutini F, Boschetti M, Candiani G, Bocchi S, Brivio PA (2014) Evaporative fraction as an indicator of moisture condition and water stress status in semiarid rangeland ecosystems. Remote Sens 6(7):6300–6323

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2):81–92

    Article  Google Scholar 

  • Raes D, Steduto P, Hsiao TC, Fereres E (2009) Aquacrop the fao crop model to simulate yield response to water: Ii. Main algorithms and software description. Agron J 101(3):438–447

    Article  Google Scholar 

  • Rao NH, Srma PBS, Chander S (1988) A simple dated waterproduction function for use in irrigated agriculture. Agric Water Manag 13:25–32

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1:318–333

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor UEA, Gottschalck J, Mitchell K, Meng CJ, Entin JK (2004) The global land data assimilation system. Bull Am Meteor Soc 85(3):381–394

    Article  Google Scholar 

  • Schmidt M, Lipson H (2009) Distilling free-form natural laws from experimental data. Science 324(5923):81–85

    Article  Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L (1996) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J Clim 9(4):676–705

    Article  Google Scholar 

  • Serrano L, Filella I, Penuelas J (2000) Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop Sci 40(3):723–731

    Article  Google Scholar 

  • Smith M, Steduto P (2012) Yield response to water: the original FAO water production function. Crop yield response to water, FAO Irrigation and Drain. Paper No.66. Food and Agriculture Organization of the U.N. Rome 2012, pp 6–13

  • Steinmetz S, Guerif M, Delecolle R, Baret F (1990) Spectral estimates of the absorbed photosynthetically active radiation and light-use efficiency of a winter wheat crop subjected to nitrogen and water deficiencies. Remote Sens 11(10):1797–1808

    Article  Google Scholar 

  • Szeicz G (1974) Solar radiation for plant growth. J Appl Ecol 11:617–636

    Article  Google Scholar 

  • Tan C, Samanta A, Jin X, Tong L, Ma C, Guo W, Knyazikhin Y (2013) Myneni, Using hyperspectral vegetation indices to estimate the fraction of photosynthetically active radiation absorbed by corn canopies. Int J Remote Sens 34(24):8789–8802

    Article  Google Scholar 

  • Tang R, Li ZL, Tang B (2010) An application of the T s–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semiarid regions: implementation and validation. Remote Sens Environ 114(3):540–551

    Article  Google Scholar 

  • Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  • Vazifedoust M, Van Dam JC, Bastiaanssen WGM, Feddes RA (2009) Assimilation of satellite data into agrohydrological models to improve crop yield forecasts. Int J Remote Sens 30(10):2523–2545

    Article  Google Scholar 

  • Viña A, Gitelson AA, Nguy-Robertson AL, Peng Y (2011) Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens Environ 115(12):3468–3478

    Article  Google Scholar 

  • Zheng Y, Zhang M, Zhang X, Zeng H, Wu B (2016) Mapping winter wheat biomass and yield using time series data blended from PROBA-V 100-and 300-m S1 products. Remote Sens 8(10):824

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mokhtari.

Appendix

Appendix

See Table 8.

Table 8 Soil parameters measured in each plot (P.1–P.8) for wheat and barley

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, A., Noory, H., Balkhi, A. et al. Comparison of Three Different Satellite-Based Approaches for Aboveground Biomass Estimation. PFG 89, 33–47 (2021). https://doi.org/10.1007/s41064-020-00134-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41064-020-00134-9

Keywords

Navigation