Skip to main content
Log in

Regulation of AKT/AMPK signaling, autophagy and mitigation of apoptosis in Rutin-pretreated SH-SY5Y cells exposed to MPP+

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Accumulating evidence suggest that apoptosis, autophagy and dysregulation of signaling pathways are common mechanisms involved in Parkinson’s disease (PD) pathogenesis, and thus development of therapeutic agents targeting these mechanisms may be useful for the treatment of this disease. Although rutin (a bioflavonoid) is reported to have pharmacological benefits such as antioxidant, anti-inflammatory and antitumor activities, there are very few reports on the activity of this compound in 1-methyl-4-phenylpyridinium (MPP+)-induced PD models. Accordingly, we investigated the effects of rutin on apoptosis, autophagy and cell signaling markers (AKT/AMPK) in SH-SY5Y cells exposed to MPP+. Results show reduced changes in nuclear morphology and mitigation of caspase 3/7 and 9 activities in rutin pre-treated cells exposed to MPP+. Likewise, rutin regulated cell signaling pathways (AKT/AMPK) and significantly decreased protein expression levels of cleaved PARP, cytochrome c, LC3-II and p62. Also, rutin significantly increased protein expression levels of full-length caspase 3 in SH-SY5Y cells treated with MPP+. Transmission electron microscope (TEM) images demonstrated a reduction in autophagosomes in rutin-pretreated SH-SY5Y cells exposed to MPP+. These results provide experimental support for rutin’s neuroprotective activity against MPP+-induced toxicity in SH-SY5Y cells, which is as a promising therapeutic agent for clinical trials in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

6-OHDA:

6-hydroxydopamine

ADP:

Adenosine diphosphate

AKT:

Protein Kinase B

AMP:

Adenosine Monophosphate

AMPK:

5′ adenosine monophosphate-activated protein kinase

ATP:

Adenosine triphosphate

Ca2+ :

Calcium

DMEM:

Dulbecco’s modified Eagle medium

FBS:

Fetal bovine serum

LC3:

Light chain 3

MPP+ :

1-methyl-4-phenylpyridinium

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

p62:

Ubiquitin-binding protein

PARP:

Poly (ADP-ribose) polymerase

PBS:

Phosphate buffered saline

PD:

Parkinson’s Disease

PI3K:

Phosphatidylinositol 3-kinase

SEM:

Standard error of the mean

SNpc:

Substantia Nigra pars compacta

TEM:

Transmission electron microscopy

References

  • Amini-Khoei H, Saghaei E, Mobini G-R, Sabzevary-Ghahfarokhi M, Ahmadi R, Bagheri N, Mokhtari T (2019) Possible involvement of PI3K/AKT/mTOR signaling pathway in the protective effect of selegiline (deprenyl) against memory impairment following ischemia reperfusion in rat. Neuropeptides 77:101942

    CAS  PubMed  Google Scholar 

  • Anglade P, Vyas S, Javoy-Agid F, Herrero M, Michel P, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch E, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol Histopathol 12:25–32

    CAS  PubMed  Google Scholar 

  • Anjomshoa M, Boroujeni SN, Ghasemi S, Lorigooini Z, Amiri A, Balali-dehkordi S, Amini-khoei H (2020) Rutin via increase in the CA3 diameter of the Hippocampus exerted antidepressant-like effect in mouse model of maternal separation stress: possible involvement of NMDA receptors. Behav Neurol 2020:1–9

    Google Scholar 

  • Arsikin K, Kravic-Stevovic T, Jovanovic M, Ristic B, Tovilovic G, Zogovic N, Bumbasirevic V, Trajkovic V, Harhaji-Trajkovic L (2012) Autophagy-dependent and-independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells. Biochim Biophys Acta 1822:1826–1836

    CAS  PubMed  Google Scholar 

  • Batlevi Y, La Spada AR (2011) Mitochondrial autophagy in neural function, neurodegenerative disease, neuron cell death, and aging. Neurobiol Dis 43:46–51

    CAS  PubMed  Google Scholar 

  • Bürkle A (2001) PARP-1: a regulator of genomic stability linked with mammalian longevity. Chembiochem 2:725–728

    PubMed  Google Scholar 

  • Button RW, Luo S, Rubinsztein DC (2015) Autophagic activity in neuronal cell death. Neurosci Bull 31:382–394

    PubMed  PubMed Central  Google Scholar 

  • Chen J, Tang X, Zhi J, Cui Y, Yu H, Tang E, Sun S, Feng J, Chen P (2006) Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 11:943–953

    CAS  PubMed  Google Scholar 

  • Cheung ZH, Ip NY (2011) Autophagy deregulation in neurodegenerative diseases–recent advances and future perspectives. J Neurochem 118:317–325

    CAS  PubMed  Google Scholar 

  • Chiang P-L, Chen H-L, Lu C-H, Chen P-C, Chen M-H, Yang I-H, Tsai N-W, Lin W-C (2017) White matter damage and systemic inflammation in Parkinson’s disease. BMC Neurosci 18:48

    PubMed  PubMed Central  Google Scholar 

  • Choi J-S, Park C, Jeong J-W (2010) AMP-activated protein kinase is activated in Parkinson’s disease models mediated by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Biochem Biophys Res Commun 391:147–151

    CAS  PubMed  Google Scholar 

  • Enogieru A, Omoruyi S, Ekpo O (2018a) Antioxidant and apoptosis-inhibition potential of Carpobrotus edulis in a model of parkinson’s disease. J African Assoc Physiol Sci 6:126–135

    Google Scholar 

  • Enogieru AB, Haylett W, Hiss DC, Bardien S, Ekpo OE (2018b) Rutin as a potent antioxidant: implications for neurodegenerative disorders. Oxidative Med Cell Longev 2018:1–17

    Google Scholar 

  • Enogieru AB, Omoruyi SI, Hiss DC, Ekpo OE (2018c) Potential antiparkinsonian agents derived from south African medicinal plants. J Herbal Med 13:1–7

    Google Scholar 

  • Enogieru AB, Haylett WL, Miller HC, van der Westhuizen FH, Hiss DC, Ekpo OE (2019) Attenuation of endoplasmic reticulum stress, impaired calcium homeostasis, and altered bioenergetic functions in MPP+-exposed SH-SY5Y cells pretreated with Rutin. Neurotox Res 36:764–776

    CAS  PubMed  Google Scholar 

  • Enogieru AB, Omoruyi SI, Ekpo OE (2020) Aqueous leaf extract of Sutherlandia frutescens attenuates ROS-induced apoptosis and loss of mitochondrial membrane potential in MPP+-treated SH-SY5Y cells. Trop J Pharm Res 19:549–555

    CAS  Google Scholar 

  • Erekat NS (2018) Apoptosis and its role in Parkinson’s disease. Exon Public:65–82

  • Fukui M, Choi HJ, Zhu BT (2010) Mechanism for the protective effect of resveratrol against oxidative stress-induced neuronal death. Free Radic Biol Med 49:800–813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia D, Shaw RJ (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66:789–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghavami S, Eshragi M, Ande SR, Chazin WJ, Klonisch T, Halayko AJ, Mcneill KD, Hashemi M, Kerkhoff C, Los M (2010) S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res 20:314–331

    CAS  PubMed  Google Scholar 

  • Gomez-Suaga P, Luzon-Toro B, Churamani D, Zhang L, Bloor-Young D, Patel S, Woodman PG, Churchill GC, Hilfiker S (2011) Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet 21:511–525

    PubMed  PubMed Central  Google Scholar 

  • Greene LA, Levy O, Malagelada C (2011) Akt as a victim, villain and potential hero in Parkinson’s disease pathophysiology and treatment. Cell Mol Neurobiol 31:969–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785

    CAS  PubMed  Google Scholar 

  • Hartmann A (2004) Postmortem studies in Parkinson's disease. Dialogues Clin Neurosci 6:281

    PubMed  PubMed Central  Google Scholar 

  • Hou X, Watzlawik JO, Fiesel FC, Springer W (2020) Autophagy in Parkinson's disease. J Mol Biol 432:2651–2672

    CAS  PubMed  Google Scholar 

  • Inamdar N, Arulmozhi D, Tandon A, Bodhankar S (2007) Parkinson's disease: genetics and beyond. Curr Neuropharmacol 5:99–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jha SK, Jha NK, Kar R, Ambasta RK, Kumar P (2015) p38 MAPK and PI3K/AKT signalling cascades in Parkinson’s disease. Int J Mol Cell Med 4:67

    PubMed  PubMed Central  Google Scholar 

  • Ju T-C, Chen H-M, Chen Y-C, Chang C-P, Chang C, Chern Y (2014) AMPK-α1 functions downstream of oxidative stress to mediate neuronal atrophy in Huntington's disease. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1842:1668–1680

    CAS  Google Scholar 

  • Jung S-N, Yang WK, Kim J, Kim HS, Kim EJ, Yun H, Park H, Kim SS, Choe W, Kang I (2008) Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis 29:713–721

    CAS  PubMed  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim C, Park S (2018) IGF-1 protects SH-SY5Y cells against MPP+-induced apoptosis via PI3K/PDK-1/Akt pathway. Endocrine Connect 7:443–455

    CAS  Google Scholar 

  • Kumar H, Kim I-S, More SV, Kim B-W, Bahk Y-Y, Choi D-K (2013) Gastrodin protects apoptotic dopaminergic neurons in a toxin-induced Parkinson’s disease model. Evid Based Complement Alterna Med 2013:1–13

    Google Scholar 

  • Le DA, Wu Y, Huang Z, Matsushita K, Plesnila N, Augustinack JC, Hyman BT, Yuan J, Kuida K, Flavell RA (2002) Caspase activation and neuroprotection in caspase-3-deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation. Proc Natl Acad Sci 99:15188–15193

    CAS  PubMed  Google Scholar 

  • Lee J-A (2012) Neuronal autophagy: a housekeeper or a fighter in neuronal cell survival? Exp Neurobiol 21:1–8

    PubMed  PubMed Central  Google Scholar 

  • Liu K, Shi N, Sun Y, Zhang T, Sun X (2013a) Therapeutic effects of rapamycin on MPTP-induced parkinsonism in mice. Neurochem Res 38:201–207

    CAS  PubMed  Google Scholar 

  • Liu Y, Shoji-Kawata S, Sumpter RM, Wei Y, Ginet V, Zhang L, Posner B, Tran KA, Green DR, Xavier RJ (2013b) Autosis is a Na+, K+-ATPase–regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia–ischemia. Proc Natl Acad Sci 110:20364–20371

    CAS  PubMed  Google Scholar 

  • Lu JY, Su P, Barber JE, Nash JE, Le AD, Liu F, Wong AH (2017) The neuroprotective effect of nicotine in Parkinson’s disease models is associated with inhibiting PARP-1 and caspase-3 cleavage. PeerJ 5:e3933

    PubMed  PubMed Central  Google Scholar 

  • Lynch-Day MA, Mao K, Wang K, Zhao M, Klionsky DJ (2012) The role of autophagy in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009357

    PubMed  PubMed Central  Google Scholar 

  • Magalingam KB, Radhakrishnan A, Haleagrahara N (2013) Rutin, a bioflavonoid antioxidant protects rat pheochromocytoma (PC-12) cells against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. Int J Mol Med 32:235–240

    CAS  PubMed  Google Scholar 

  • Magalingam KB, Radhakrishnan A, Haleagrahara N (2016) Protective effects of quercetin glycosides, rutin, and isoquercetrin against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rat pheochromocytoma (PC-12) cells. Int J Immunopathol Pharmacol 29:30–39

    CAS  PubMed  Google Scholar 

  • Malagelada C, Jin ZH, Greene LA (2008) RTP801 is induced in Parkinson's disease and mediates neuron death by inhibiting Akt phosphorylation/activation. J Neurosci 28:14363–14371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S, Greene LA (2010) Rapamycin protects against neuron death in in vitro andIn vivo models of Parkinson's disease. J Neurosci 30:1166–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martire S, Mosca L, d’Erme M (2015) PARP-1 involvement in neurodegeneration: a focus on Alzheimer’s and Parkinson’s diseases. Mech Ageing Dev 146:53–64

    PubMed  Google Scholar 

  • Maycotte P, Thorburn A (2011) Autophagy and cancer therapy. Cancer Biol Ther 11:127–137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith G, Totterdell S, Beales M, Meshul C (2009) Impaired glutamate homeostasis and programmed cell death in a chronic MPTP mouse model of Parkinson's disease. Exp Neurol 219:334–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19:983–997

    CAS  PubMed  Google Scholar 

  • Pan T, Rawal P, Wu Y, Xie W, Jankovic J, Le W (2009) Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience 164:541–551

    CAS  PubMed  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun J-A, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    CAS  PubMed  Google Scholar 

  • Park IJ, Hwang JT, Kim YM, Ha J, Park OJ (2006) Differential modulation of AMPK signaling pathways by low or high levels of exogenous reactive oxygen species in colon cancer cells. Ann N Y Acad Sci 1091:102–109

    CAS  PubMed  Google Scholar 

  • Park S-E, Sapkota K, Choi J-H, Kim M-K, Kim YH, Kim KM, Kim KJ, Oh H-N, Kim S-J, Kim S (2014) Rutin from Dendropanax morbifera Leveille protects human dopaminergic cells against rotenone induced cell injury through inhibiting JNK and p38 MAPK signaling. Neurochem Res 39:707–718

    CAS  PubMed  Google Scholar 

  • Perk AA, Shatynska-Mytsyk I, Gerçek YC, Boztaş K, Yazgan M, Fayyaz S, Farooqi AA (2014) Rutin mediated targeting of signaling machinery in cancer cells. Cancer Cell Int 14:124

    PubMed  PubMed Central  Google Scholar 

  • Prigione A, Piazza F, Brighina L, Begni B, Galbussera A, DiFrancesco JC, Andreoni S, Piolti R, Ferrarese C (2010) Alpha-synuclein nitration and autophagy response are induced in peripheral blood cells from patients with Parkinson disease. Neurosci Lett 477:6–10

    CAS  PubMed  Google Scholar 

  • Qin R, Li X, Li G, Tao L, Li Y, Sun J, Kang X, Chen J (2011) Protection by tetrahydroxystilbene glucoside against neurotoxicity induced by MPP+: the involvement of PI3K/Akt pathway activation. Toxicol Lett 202:1–7

    CAS  PubMed  Google Scholar 

  • Raza H, John A, Brown EM, Benedict S, Kambal A (2008) Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells. Toxicol Appl Pharmacol 226:161–168

    CAS  PubMed  Google Scholar 

  • Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson's disease: why is advancing age the biggest risk factor? Ageing Res Rev 14:19–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Blanco J, Martin V, Herrera F, García-Santos G, Antolín I, Rodriguez C (2008) Intracellular signaling pathways involved in post-mitotic dopaminergic PC12 cell death induced by 6-hydroxydopamine. J Neurochem 107:127–140

    CAS  PubMed  Google Scholar 

  • Rosso P, Fioramonti M, Fracassi A, Marangoni M, Taglietti V, Siteni S, Segatto M (2016) AMPK in the central nervous system: physiological roles and pathological implications. Res Rep Biol 7:1–13

    CAS  Google Scholar 

  • Schulz J (2006) Anti-apoptotic gene therapy in Parkinson’s disease. Parkinsonism Relat Disord 70:467–476

    CAS  Google Scholar 

  • Serviddio G, Davide Romano A, Cassano T, Bellanti F, Altomare E, Vendemiale G (2011) Principles and therapeutic relevance for targeting mitochondria in aging and neurodegenerative diseases. Curr Pharm Des 17:2036–2055

    CAS  PubMed  Google Scholar 

  • Strober W (1997) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 21:a:3B. 1-a–3B3B. 2

    Google Scholar 

  • Tamilselvam K, Braidy N, Manivasagam T, Essa MM, Prasad NR, Karthikeyan S, Thenmozhi AJ, Selvaraju S, Guillemin GJ (2013) Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxidative Med Cell Longev 2013:1–11

    Google Scholar 

  • Tasaki Y, Omura T, Yamada T, Ohkubo T, Suno M, Iida S, Sakaguchi T, Asari M, Shimizu K, Matsubara K (2010) Meloxicam protects cell damage from 1-methyl-4-phenyl pyridinium toxicity via the phosphatidylinositol 3-kinase/Akt pathway in human dopaminergic neuroblastoma SH-SY5Y cells. Brain Res 1344:25–33

    CAS  PubMed  Google Scholar 

  • Timmons S, Coakley MF, Moloney AM, O’Neill C (2009) Akt signal transduction dysfunction in Parkinson's disease. Neurosci Lett 467:30–35

    CAS  PubMed  Google Scholar 

  • Venderova K, Park DS (2012) Programmed cell death in Parkinson's disease. Cold Spring Harb Perspect Med 2:a009365

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Whiteman MW, Lian H, Wang G, Singh A, Huang D, Denmark T (2009) A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J Biol Chem 284:21412–21424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen Z, Zhang J, Tang P, Tu N, Wang K, Wu G (2018) Overexpression of miR-185 inhibits autophagy and apoptosis of dopaminergic neurons by regulating the AMPK/mTOR signaling pathway in Parkinson's disease. Mol Med Report 17:131–137

    CAS  Google Scholar 

  • White E (2008) Autophagic cell death unraveled: pharmacological inhibition of apoptosis and autophagy enables necrosis. Autophagy 4:399–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xilouri M, Stefanis L (2011) Autophagic pathways in Parkinson disease and related disorders. Expert Rev Mol Med 13:1–21

    Google Scholar 

  • Xu Y, Liu C, Chen S, Ye Y, Guo M, Ren Q, Liu L, Zhang H, Xu C, Zhou Q (2014) Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson's disease. Cell Signal 26:1680–1689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo H, Ku S-K, Baek Y-D, Bae J-S (2014) Anti-inflammatory effects of rutin on HMGB1-induced inflammatory responses in vitro and in vivo. Inflamm Res 63:197–206

    CAS  PubMed  Google Scholar 

  • Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12:1542–1552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Dong Y, Xu X, Xu Z (2012) The role of autophagy in Parkinson's disease. Neural Regen Res 7:141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, He H, Song H, Zhao J, Li T, Wu L, Zhang X, Chen J (2016) Neuroprotective effects of Salidroside in the MPTP mouse model of Parkinson’s disease: involvement of the PI3K/Akt/GSK3β pathway. J Parkinsons Dis 2016:1–9

    Google Scholar 

  • Zhao Q, Ye J, Wei N, Fong C, Dong X (2016) Protection against MPP+-induced neurotoxicity in SH-SY5Y cells by tormentic acid via the activation of PI3-K/Akt/GSK3β pathway. Neurochem Int 97:117–123

    CAS  PubMed  Google Scholar 

  • Zhao J, Geng L, Chen Y, Wu C (2020) SNHG1 promotes MPP+-induced cytotoxicity by regulating PTEN/AKT/mTOR signaling pathway in SH-SY5Y cells via sponging miR-153-3p. Biol Res 53:1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JH, Guo F, Shelburne J, Watkins S, Chu CT (2003) Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol 13:473–481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J-h, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT (2007) Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 170:75–86

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the Parkinson’s Disease Research Group, Division of Molecular Biology and Human Genetics, Stellenbosch University for providing some laboratory materials and workspace needed for this study.

Funding

This work did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

ABE performed cell culture experiments and analyzed the data. WH assisted with the western blot experiments. DCH and OEE developed the concepts, designed, and supervised the project. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Okobi Eko Ekpo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable. This article does not contain any studies with human participants.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Rutin inhibits cell toxicity in SH-SY5Y cells treated with MPP+

• Rutin protects against apoptosis in SH-SY5Y cells treated with MPP+

• Rutin rescues changes in nuclear morphology in SH-SY5Y cells treated with MPP+

• Rutin inhibits abnormal autophagy activation in SH-SY5Y cells treated with MPP+

• The protective effect of rutin against MPP+-induced toxicity involves the regulation of AKT/AMPK signaling

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enogieru, A.B., Haylett, W., Hiss, D.C. et al. Regulation of AKT/AMPK signaling, autophagy and mitigation of apoptosis in Rutin-pretreated SH-SY5Y cells exposed to MPP+. Metab Brain Dis 36, 315–326 (2021). https://doi.org/10.1007/s11011-020-00641-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-020-00641-z

Keywords

Navigation