Skip to main content
Log in

Establishment of the Model Widely Valid for the Melting and Vaporization Zones in Selective Laser Melting Printings Via Experimental Verifications

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

The thermally affected material properties operating in the three phases and porosity variations in the SS316L steel powder have been introduced to the numerical analyses for the transient volumetric heat source (Q) models developed for the solid powder, melting, and vaporization regions in the selective laser melting (SLM). The bulk Q is thus a function of these heat sources and their ratio defined for the liquid and vapor phases. The heat conduction developed for the solid powders with porosity strings the heat convection with Q as the moving heat source to solve two-dimensional temperature distributions efficiently without the confinement of operating conditions and phase presumption. The specimens with single- and multiple-track printings are prepared to investigate the effects of incident energy density (E) and power intensity (Io) on the geometries of single-track printings and the areal surface roughness (Sa) values of the multiple-track printings with 0 and 50% overlap ratios. Laser power and scanning velocity are the controlling factors for the melting pool depth D and width W. D and W become the governing factors for the keyhole with evaporations, which affects the height H of single track after solidification. The W and D results predicted by the theoretical models developed in this study have an error range, 5–20%, compared to the experimental ones, which is much lower than those reported in the literatures (Gusarov et al. in J Heat Transf 131(7):072101, 2009. https://doi.org/10.1115/1.3109245; Hussein et al. in Mater Des 52:638–647, 2013. https://doi.org/10.1016/j.matdes.2013.05.070; Yin et al. Int J Adv Manuf Technol 83(9–12): 1847–1859, 2016. https://doi.org/10.1007/s00170-015-7609-x; Andreotta et al. in Finite Elem Anal Des 135: 36–43, 2017. https://doi.org/10.1016/j.finel.2017.07.002). The contact angle (ϕ*) is defined as a function of single-track width (W) and solidification height (H). ϕ* and Sa are significantly reduced as an E is applied beyond its critical value (47.62–57.14 J/mm3). Significant change in Sa is ascribed to the big difference in the morphology and its surface pattern when E or Io reaches its critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gusarov, A. V., Yadroitsev, I., Bertrand, P., & Smurov, I. (2009). Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. Journal of Heat Transfer, 131(7), 072101. https://doi.org/10.1115/1.3109245.

    Article  Google Scholar 

  2. Hussein, A., Hao, L., Yan, C., & Everson, R. (2013). Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Materials and Design, 52, 638–647. https://doi.org/10.1016/j.matdes.2013.05.070.

    Article  Google Scholar 

  3. Yin, J., Zhu, H., Ke, L., Hu, P., He, C., Zhang, H., et al. (2016). A finite element model of thermal evolution in laser micro sintering. The International Journal of Advanced Manufacturing Technology, 83(9–12), 1847–1859. https://doi.org/10.1007/s00170-015-7609-x.

    Article  Google Scholar 

  4. Andreotta, R., Ladani, L., & Brindley, W. (2017). Finite element simulation of laser additive melting and solidification of Inconel 718 with experimentally tested thermal properties. Finite Elements in Analysis and Design, 135, 36–43. https://doi.org/10.1016/j.finel.2017.07.002.

    Article  Google Scholar 

  5. Telenko, C., & Seepersad, C. C. (2012). A comparison of the energy efficiency of selective laser sintering and injection molding of nylon parts. Rapid Prototyping Journal, 18(6), 472–481. https://doi.org/10.1108/13552541211272018.

    Article  Google Scholar 

  6. Yoon, H. S., Lee, J. Y., Kim, H. S., Kim, M. S., Kim, E. S., Shin, Y. J., et al. (2014). A comparison of energy consumption in bulk forming, subtractive, and additive processes: Review and case study. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(3), 261–279. https://doi.org/10.1007/s40684-014-0033-0.

    Article  Google Scholar 

  7. Ahn, S. H., Chun, D. M., & Chu, W. S. (2013). Perspective to green manufacturing and applications. International Journal of Precision Engineering and Manufacturing, 14(6), 873–874. https://doi.org/10.1007/s12541-013-0114-y.

    Article  Google Scholar 

  8. Moon, S. K., Tan, Y. E., Hwang, J., & Yoon, Y. J. (2014). Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(3), 223–228. https://doi.org/10.1007/s40684-014-0028-x.

    Article  Google Scholar 

  9. Ahn, D. G. (2016). Direct metal additive manufacturing processes and their sustainable applications for green technology: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(4), 381–395. https://doi.org/10.1007/s40684-016-0048-9.

    Article  Google Scholar 

  10. Lee, H., Lim, C. H. J., Low, M. J., Tham, N., Murukeshan, V. M., & Kim, Y. J. (2017). Lasers in additive manufacturing: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 307–322. https://doi.org/10.1007/s40684-017-0037-7.

    Article  Google Scholar 

  11. Ding, D., Pan, Z., Cuiuri, D., & Li, H. (2015). Wire-feed additive manufacturing of metal components: Technologies, developments and future interests. The International Journal of Advanced Manufacturing Technology, 81(1–4), 465–481. https://doi.org/10.1007/s00170-015-7077-3.

    Article  Google Scholar 

  12. Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S., et al. (2016). Energy and emissions saving potential of additive manufacturing: The case of lightweight aircraft components. Journal of Cleaner Production, 135, 1559–1570. https://doi.org/10.1016/j.jclepro.2015.04.109.

    Article  Google Scholar 

  13. Ahn, S. H. (2014). An evaluation of green manufacturing technologies based on research databases. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 5–9. https://doi.org/10.1007/s40684-014-0001-8.

    Article  Google Scholar 

  14. Shan, Z., Qin, S., Liu, Q., & Liu, F. (2012). Key manufacturing technology & equipment for energy saving and emissions reduction in mechanical equipment industry. International Journal of Precision Engineering and Manufacturing, 13(7), 1095–1100. https://doi.org/10.1007/s12541-012-0143-y.

    Article  Google Scholar 

  15. Amada Miyachi America Inc. (2016). Laser welding fundamentals, Chapter 7 Continuous Wave Laser Welding. https://amadaweldtech.com/wp-content/uploads/2019/12/Laser-Welding-Fundamentals.pdf.

  16. Richardson, D. J., Nilsson, J., & Clarkson, W. A. (2010). High power fiber lasers: Current status and future perspectives. Journal of the Optical Society of America B, 27(11), B63–B92. https://doi.org/10.1364/JOSAB.27.000B63.

    Article  Google Scholar 

  17. Walsh, C.A. (2002). Laser welding–literature review. Materials Science and Metallurgy Department, University of Cambridge, England, Sec.6 Heat Flow in Laser Welding. http://www.phase-trans.msm.cam.ac.uk/2011/laser_Walsh_review.pdf.

  18. Roberts, I. A., Wang, C. J., Esterlein, R., Stanford, M., & Mynors, D. J. (2009). A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. International Journal of Machine Tools and Manufacture, 49(12–13), 916–923. https://doi.org/10.1016/j.ijmachtools.2009.07.004.

    Article  Google Scholar 

  19. Cervera, G. B. M., & Lombera, G. (1999). Numerical prediction of temperature and density distributions in selective laser sintering processes. Rapid Prototyping Journal, 5(1), 21–26. https://doi.org/10.1108/13552549910251846.

    Article  Google Scholar 

  20. Yagi, S., & Kunii, D. (1957). Studies on effective thermal conductivities in packed beds. AIChE Journal, 3(3), 373–381. https://doi.org/10.1002/aic.690030317.

    Article  Google Scholar 

  21. Sih, S. S., & Barlow, J. W. (2004). The prediction of the emissivity and thermal conductivity of powder beds. Particulate Science and Technology, 22(4), 427–440. https://doi.org/10.1080/02726350490501682.

    Article  Google Scholar 

  22. Gu, H., Gong, H., Pal, D., Rafi, K., Starr, T., & Stucker, B. (2013). Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel. In 2013 Solid Freeform Fabrication Symposium. http://utw10945.utweb.utexas.edu/Manuscripts/2013/2013-37-Gu.pdf.

  23. Prashanth, K. G., Scudino, S., Maity, T., Das, J., & Eckert, J. (2017). Is the energy density a reliable parameter for materials synthesis by selective laser melting. Materials Research Letters, 5(6), 386–390. https://doi.org/10.1080/21663831.2017.1299808.

    Article  Google Scholar 

  24. Yadroitsev, I., Krakhmalev, P., & Yadroitsava, I. (2014). Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution. Journal of Alloys Compounds, 583, 404–409. https://doi.org/10.1016/j.jallcom.2013.08.183.

    Article  Google Scholar 

  25. Goldak, J., Chakravarti, A., & Bibby, M. (1984). A new finite element model for welding heat sources. Metallurgical and Materials Transactions B, 15(2), 299–305. https://doi.org/10.1007/BF02667333.

    Article  Google Scholar 

  26. Moelans, N., Blanpain, B., & Wollants, P. (2008). An introduction to phase-field modeling of microstructure evolution. Calphad, 32(2), 268–294. https://doi.org/10.1016/j.calphad.2007.11.003.

    Article  Google Scholar 

  27. Cahn, J. W., & Hilliard, J. E. (1958). Free energy of a nonuniform system. I. Interfacial free energy. The Journal of Chemical Physics, 28(2), 258–267. https://doi.org/10.1063/1.1744102.

    Article  MATH  Google Scholar 

  28. Bag, S., Trivedi, A., & De, A. (2009). Development of a finite element based heat transfer model for conduction mode laser spot welding process using an adaptive volumetric heat source. International Journal of Thermal Sciences, 48(10), 1923–1931. https://doi.org/10.1016/j.ijthermalsci.2009.02.010.

    Article  Google Scholar 

  29. Assuncao, E., & Williams, S. (2014). Effect of material properties on the laser welding mode limits. Journal of Laser Applications, 26(1), 012008. https://doi.org/10.2351/1.4826153.

    Article  Google Scholar 

  30. Chelladurai, A. M., Gopal, K. A., Murugan, S., Venugopal, S., & Jayakumar, T. (2015). Energy transfer modes in pulsed laser seam welding. Journal of Manufacturing and Materials Processing, 30(2), 162–168. https://doi.org/10.1080/10426914.2014.965829.

    Article  Google Scholar 

  31. Dong, L., Makradi, A., Ahzi, S., & Remond, Y. (2007). Finite element analysis of temperature and density distributions in selective laser sintering process. Materials Sciences Forum, 553, 75–80. https://doi.org/10.4028/www.scientific.net/MSF.553.75.

    Article  Google Scholar 

  32. Streek, A., Regenfuss, P., & Exner, H. (2013). Fundamentals of energy conversion and dissipation in powder layers during laser micro sintering. Physics Procedia, 41, 858–869. https://doi.org/10.1016/j.phpro.2013.03.159.

    Article  Google Scholar 

  33. Boley, C. D., Mitchell, S. C., Rubenchik, A. M., & Wu, S. S. Q. (2016). Metal powder absorptivity: Modeling and experiment. Applied Optics, 55(23), 6496–6500. https://doi.org/10.1364/AO.55.006496.

    Article  Google Scholar 

  34. Vastola, G., Zhang, G., Pei, Q. X., & Zhang, Y. W. (2015). Modeling and control of remelting in high-energy beam additive manufacturing. Additive Manufacturing, 7, 57–63. https://doi.org/10.1016/j.addma.2014.12.004.

    Article  Google Scholar 

  35. Gusarov, A. V., & Kruth, J. P. (2005). Modelling of radiation transfer in metallic powders at laser treatment. International Journal of Heat and Mass Transfer, 48(16), 3423–3434. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.044.

    Article  MATH  Google Scholar 

  36. Ai, Y., Jiang, P., Shao, X., Li, P., & Wang, C. (2017). A three-dimensional numerical simulation model for weld characteristics analysis in fiber laser keyhole welding. International Journal of Heat and Mass Transfer, 108, 614–626. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.034.

    Article  Google Scholar 

  37. Wang, H., Shi, Y., & Gong, S. (2006). Numerical simulation of laser keyhole welding processes based on control volume methods. Journal of Physics D: Applied Physics, 39(21), 4722–4730. https://doi.org/10.1088/0022-3727/39/21/032.

    Article  Google Scholar 

  38. Dai, D., & Gu, D. (2015). Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder. International Journal of Machine Tools and Manufacture, 88, 95–107. https://doi.org/10.1016/j.ijmachtools.2014.09.010.

    Article  Google Scholar 

  39. Rombouts, M., Froyen, L., Gusarov, A. V., Bentefour, E. H., & Glorieux, C. (2005). Photopyroelectric measurement of thermal conductivity of metallic powders. Journal of Applied Physics, 97(2), 024905. https://doi.org/10.1063/1.1832740.

    Article  Google Scholar 

  40. Kruth, J. P., Levy, G., Klocke, F., & Childs, T. H. C. (2007). Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals, 56(2), 730–759. https://doi.org/10.1016/j.cirp.2007.10.004.

    Article  Google Scholar 

  41. Simchi, A. (2006). Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features. Materials Science and Engineering A, 428(1–2), 148–158. https://doi.org/10.1016/j.msea.2006.04.117.

    Article  Google Scholar 

  42. Gong, H., Rafi, K., Starr, T., & Stucker, B. (2013). The effects of processing parameters on defect regularity in Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting. In 24th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX. https://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-33-Gong.pdf.

  43. Khairallah, S. A., Anderson, A. T., Rubenchik, A., & King, W. E. (2016). Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Materialia, 108, 36–45. https://doi.org/10.1016/j.actamat.2016.02.014.

    Article  Google Scholar 

  44. Tsai, M. C., & Kou, S. (1989). Marangoni convection in weld pools with a free surface. International Journal for Numerical Methods in Fluids, 9(12), 1503–1516. https://doi.org/10.1002/fld.1650091206.

    Article  MATH  Google Scholar 

  45. Steen, W. M., & Mazumder, J. (2010). Laser Material Processing. London: Springer.

    Book  Google Scholar 

  46. COMSOL. (2015). Heat Transfer Module User’s Guide. Burlington COMSOL Multiphysics. https://doc.comsol.com/5.4/doc/com.comsol.help.heat/HeatTransferModuleUsersGuide.pdf.

  47. Hu, H., & Argyropoulos, S. A. (1996). Mathematical modelling of solidification and melting: A review. Modelling and Simulation in Materials Science and Engineering, 4(4), 371–396. https://doi.org/10.1088/0965-0393/4/4/004.

    Article  Google Scholar 

  48. COMSOL. (2017). CFD Module User’s Guide. Burlington COMSOL Multiphysics. https://doc.comsol.com/5.3/doc/com.comsol.help.cfd/CFDModuleUsersGuide.pdf.

  49. Yue, P., Feng, J. J., Liu, C., & Shen, J. (2004). A diffuse-interface method for simulating two-phase flows of complex fluids. Journal of Fluid Mechanics, 515, 293–317. https://doi.org/10.1017/S0022112004000370.

    Article  MathSciNet  MATH  Google Scholar 

  50. Bergman, T. L., Incropera, F. P., DeWitt, D. P., & Lavine, A. S. (2011). Fundamentals of Heat and Mass Transfer. Hoboken: Wiley.

    Google Scholar 

  51. Foroozmehr, A., Badrossamay, M., & Foroozmehr, E. (2016). Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Materials and Design, 89, 255–263. https://doi.org/10.1016/j.matdes.2015.10.002.

    Article  Google Scholar 

  52. Valencia, J. J., & Quested, P. N. (2013). Thermophysical properties. ASM Handbook. https://doi.org/10.1361/asmhba0005240.

    Article  Google Scholar 

  53. COMSOL. (2017). COMSOL Material Library. Burlington COMSOL Multiphysics. https://doc.comsol.com/5.3/doc/com.comsol.help.matlib/MaterialLibraryUsersGuide.pdf.

  54. Taylor, C.M. (2004). Direct laser sintering of stainless steel: thermal experiments and numerical modelling. University of Leeds. http://etheses.whiterose.ac.uk/378/1/uk_bl_ethos_400851.pdf.

  55. Chan, C., Mazumder, J., & Chen, M. M. (1984). A two-dimensional transient model for convection in laser melted pool. Metallurgical and Materials Transactions A, 15(12), 2175–2184. https://doi.org/10.1007/BF02647100.

    Article  Google Scholar 

  56. Tsirkas, S. A., Papanikos, P., & Kermanidis, T. (2003). Numerical simulation of the laser welding process in butt-joint specimens. Journal of Materials Processing Technology, 134(1), 59–69. https://doi.org/10.1016/S0924-0136(02)00921-4.

    Article  Google Scholar 

  57. Kazemi, K., & Goldak, J. A. (2009). Numerical simulation of laser full penetration welding. Computational Materials Science, 44(3), 841–849. https://doi.org/10.1016/j.commatsci.2008.01.002.

    Article  Google Scholar 

  58. Shanmugam, N.S., Buvanashekaran, G., & Sankaranarayanasamy, K. (2009). Finite element simulation of Nd: YAG laser lap welding of AISI 304 stainless steel sheets. Recent Advances in Mechanical Engineering and Automatic Control. http://www.wseas.us/e-library/conferences/2012/Paris/MECONT/MECONT-30.pdf.

  59. Yadroitsev, I., Gusarov, A., Yadroitsava, I., & Smurov, I. (2010). Single track formation in selective laser melting of metal powders. Journal of Materials Processing Technology, 210(12), 1624–1631. https://doi.org/10.1016/j.jmatprotec.2010.05.010.

    Article  Google Scholar 

  60. Burakowski, T., & Wierzchon, T. (1998). Surface engineering of metals: principles, equipment, technologies. Boca Raton: CRC Press.

    Book  Google Scholar 

Download references

Acknowledgements

Funding was provided by Industrial Technology Research Institute, Taiwan, R.O.C. (Grant no. FY108-CH1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Fin Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CS., Wu, KT., Han, CF. et al. Establishment of the Model Widely Valid for the Melting and Vaporization Zones in Selective Laser Melting Printings Via Experimental Verifications. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 143–162 (2022). https://doi.org/10.1007/s40684-020-00283-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00283-7

Keywords

Navigation