Skip to main content
Log in

Large-scale Late Triassic to Early Jurassic high εHf(t)–εNd(t) felsic rocks in the Ergun Massif (NE China): implications for southward subduction of the Mongol–Okhotsk oceanic slab and lateral crustal growth

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Manzhouli–Xin Barag right banner are located in the southwest of the Ergun Massif (NE China), the tectonic evolution of these areas are still controversial. In this study, a series of rocks comprising rhyolites (LA–ICP–MS U–Pb zircon ages of 206 ± 2 Ma and 195 ± 2 Ma), granodiorites (196 ± 1 Ma and 190 ± 1 Ma), and monzogranites (206 ± 5 Ma and 196 ± 1 Ma) are newly identified. Whole-rock major and trace element analyses show that these felsic rocks and granites belong to the metaluminous to peraluminous, high-K calc-alkaline series, and can be classified as I-type granites. The zircon in-situ Lu–Hf isotope analyses on rhyolite, granodiorite, and monzogranite, yielded the εHf(t) values that are ranging from of 9.7–12.1, and two-stage model age are in the range of 0.5 Ga to 0.6 Ga, εHf(t) values of 4.4–7.5, 0.8–1.0 Ga, εHf(t) values of 6.0–10.5, 0.6–0.9 Ga, respectively. The whole-rock Sr–Nd isotope analyses on rhyolite, granodiorite, and monzogranite, yielded lower initial 87Sr/86Sr ratios (ISr) of 0.703374–0.703586, 0.704503–0.704577, 0.704936–0.704379, with medium εNd(t) values of 4.32–4.38, 1.54–2.96, − 0.68 to 2.73, respectively, suggesting that they are derived from the partial melting of a juvenile depleted lower crust. They all show enrichment in the large ion lithophile elements (e.g., Rb, Ba, and K) and depletion in the high field strength elements (e.g., Nb, Ta, and Ti), indicating that they are generated in an Andean-type arc setting and are metasomatized by subduction-slab released fluids or melts with minor crustal contamination. Mainly three magmatic phases: ca. 283–225 Ma, ca. 225–166 Ma, and ca. 166 Ma–114 Ma are identified in the Ergun Massif, and above Late Triassic to Early Jurassic magmatic rocks are related to the second phase, which attribute to the Mongol–Okhotsk ocean southward subduction and lateral crustal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

modified from Li et al. 2018b; Zhao et al. 2018b)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barth AP, Wooden JL, Tosdal RM, Morrison J (1995) Crustal contamination in the petrogenesis of a calc-alkalic rock series: Josephine Mountain intrusion, California. GSA Bull 107(2):201–212

    Google Scholar 

  • Bas MJL, Maitre RWL, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the Total Alkali-Silica Diagram. J Petrol 27(3):745–750

    Google Scholar 

  • Beard JS, Lofgren GE (1991) Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. J Petrol 32(2):365–401

    Google Scholar 

  • Brown M (2013) Granite: From genesis to emplacement. GSA Bull 125(7–8):1079–1113

    Google Scholar 

  • Bussien D, Gombojav N, Winkler W, von Quadt A (2011) The Mongol-Okhotsk Belt in Mongolia—an appraisal of the geodynamic development by the study of sandstone provenance and detrital zircons. Tectonophysics 510(1–2):132–150

    Google Scholar 

  • Cawood PA, Hawkesworth CJ, Dhuime B (2013) The continental record and the generation of continental crust. Geol Soc Am Bull 125(1–2):14–32

    Google Scholar 

  • Chappell BW (1999) Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46(3):535–551

    Google Scholar 

  • Chappell BW, Bryant CJ, Wyborn D (2012) Peraluminous I-type granites. Lithos 153:142–153

    Google Scholar 

  • Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinb Earth Sci 83(1–2):1–26

    Google Scholar 

  • Chen YJ, Zhang C, Wang P, Pirajno F, Li N (2017) The Mo deposits of Northeast China: A powerful indicator of tectonic settings and associated evolutionary trends. Ore Geol Rev 81:602–640

    Google Scholar 

  • Chen ZG, Zhang LC, Lu BZ, Li ZL, Wu HY, Xiang P, Huang SW (2010) Geochronology and geochemistry of the Taipingchuan copper-molybdenum deposit in Inner Mongolia, and its geological significances. Acta Petrol Sin 26(5):1437–1449

    Google Scholar 

  • Chen ZG, Zhang LC, Wan B, Wu HY, Cleven NT (2011) Geochronology and geochemistry of the Wunugetushan porphyry Cu-Mo deposit in NE china, and their geological significance. Ore Geol Rev 43(1):92–105

    Google Scholar 

  • Chen ZG, Zhang LC, Zhou XH, Wan B, Ying JF, Wang F (2006) Geochronology and geochemical characteristics of volcanic rocks section in Manzhouli Xinyouqi, Inner-Mongolia. Acta Petrol Sin 22(12):2971–2986

    Google Scholar 

  • Collins WJ (1994) Upper- and middle-crustal response to delamination: An example from the Lachlan fold belt, eastern Australia. Geology 22(2):143–146

    Google Scholar 

  • Deng CZ, Sun DY, Han JS, Chen HY, Li GH, Xiao B, Li RC, Feng YZ, Li CL, Lu S (2019a) Late-stage southwards subduction of the Mongol-Okhotsk oceanic slab and implications for porphyry Cu-Mo mineralization: Constraints from igneous rocks associated with the Fukeshan deposit, NE China. Lithos 326:341–357

    Google Scholar 

  • Deng CZ, Sun DY, Li GH, Lu S, Tang ZY, Gou J, Yang YJ (2019b) Early Cretaceous volcanic rocks in the Great Xing’an Range: Late effect of a flat-slab subduction. J Geodyn 124:38–51

    Google Scholar 

  • Donskaya TV, Gladkochub DP, Mazukabzov AM, De Waele B, Presnyakov SL (2012) The Late Triassic Kataev volcanoplutonic association in western Transbaikalia, a fragment of the active continental margin of the Mongol-Okhotsk Ocean. Russ Geol Geophys 53(1):22–36

    Google Scholar 

  • Eby GN (1992) Chemical subdivision of the A-Type Granitoids; Petrogenetic and tectonic implications. Geology 20(7):641–644

    Google Scholar 

  • Eiler JM, Crawford A, Elliott T, Farley KA, Valley JW, Stolper EM (2000) Oxygen isotope geochemistry of oceanic-arc lavas. J Pet 41(2):229–256

    Google Scholar 

  • Feng ZQ, Liu YJ, Li L, Jin W, Jiang LW, Li WM, Wen QB, Zhao YL (2019) Geochemical and geochronological constraints on the tectonic setting of the Xinlin ophiolite, northern Great Xing’an Range, NE China. Lithos 326:213–229

    Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. j Petrol 42(11):2033–2048

    Google Scholar 

  • Gao BY, Zhang LC, Jin XD, Li WJ, Chen ZG, Zhu MT (2016) Geochronology and geochemistry of the Badaguan porphyry Cu-Mo deposit in Derbugan metallogenic belt of the NE China, and their geological significances. Int J Earth Sci 105(2):507–519

    Google Scholar 

  • Ge WC, Wu FY, Zhou CY, Zhang JH (2005) Zircon U-Pb ages and its significance of the Mesozoic granites in the Wulanhaote region, central Da Hinggan Mountain. Acta Petrol Sin 21(3):749–762

    Google Scholar 

  • Gou J, Sun DY, Ren YS, Hou XG, Yang DG (2017) Geochemical and Hf isotopic compositions of Late Triassic-Early Jurassic intrusions of the Erguna Block, Northeast China: petrogenesis and tectonic implications. Int Geol Rev 59(3):347–367

    Google Scholar 

  • Han R, Qin KZ, Su SQ, Groves DI, Zhao C, Hui KX, Meng ZJ (2020) An Early Cretaceous Ag-Pb-Zn mineralization at Halasheng in the South Erguna Block, NE China: Constraints from U-Pb and Rb-Sr geochronology, geochemistry and Sr-Nd-Hf isotopes. Ore Geol Rev 122:103526

    Google Scholar 

  • Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories. Chem Geol 110(1):1–13

    Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90(3):297–314

    Google Scholar 

  • Holden P, Halliday AN, Stephens WE, Henney PJ (1991) Chemical and isotopic evidence for major mass transfer between mafic enclaves and felsic magma. Chem Geol 92(1–3):135–152

    Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of Zircon and Igneous and metamorphic Petrogenesis. Rev MinerGeochem 53(1):27–62

    Google Scholar 

  • Hu JH, Yang HB, Zhou CF, Gao XQ, Wei XY, Sun T, Li YH, Ma J (2018) Early jurassic granites in Fuyuangou forest farm of Mohe county, northern DaXingAnLing moutains: Chronology, G eochemistry and Tectonic Implications. Geol Resour 27(03):224-234_278

    Google Scholar 

  • IMBGMR (1996) Litho Stratigraphy of Inner Mongolia (in Chinese with English summary). China University of Geosciences Press, Wu Han, pp 1–344

    Google Scholar 

  • Inger S, Harris N (1993) Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya. J Petrol 34(2):345–368

    Google Scholar 

  • Ji Z, Ge WC, Wang QH, Yang H, Zhao GC, Bi JH, Dong Y (2016) Petrogenesis of Early Cretaceous volcanic rocks of the Manketouebo Formation in the Wuchagou region, central Great Xing’an Range, NE China, and tectonic implications: geochronological, geochemical, and Hf isotopic evidence. Int Geol Rev 58(5):556–573

    Google Scholar 

  • Jiang Y, Jiang S, Li S, Wang G, Zhang W, Lu L, Guo L, Liu Y, Santosh M (2020) Paleozoic to Mesozoic micro-block tectonics in the eastern Central Asian Orogenic Belt: insights from magnetic and gravity anomalies. Gondwana Res. https://doi.org/10.1016/j.gr.2020.06.013

    Article  Google Scholar 

  • Kang YJ, She HQ, Lai Y, Wang ZQ, Li JW, Zhang ZH, Xiang AP, Jiang ZS (2018) Evolution of Middle-Late Triassic granitic intrusions from the Badaguan Cu-Mo deposit, Inner Mongolia: Constraints from zircon U-Pb dating, geochemistry and Hf isotopes. Ore Geol Rev 95:195–215

    Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas M, Bonin B, Bateman P (2004) Igneous rocks: a classification and glossary of terms : recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, New York

    Google Scholar 

  • Li Y, Wang J, Han ZB, Hou XG, Wang SY (2017a) Zircon U−Pb dating and petrogenesis of the Early Jurassic rhyolite in Badaguan area, northern Da Hinggan Mountains. Geol China 44(02):346–357

    Google Scholar 

  • Li Y, Xu WL, Tang J, Pei FP, Wang F, Sun CY (2018a) Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing’an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime. Lithos 304:57–73

    Google Scholar 

  • Li Y, Xu WL, Wang F, Pei FP, Tang J, Zhao S (2017b) Triassic volcanism along the eastern margin of the Xing’an Massif, NE China: Constraints on the spatial–temporal extent of the Mongol-Okhotsk tectonic regime. Gondwana Res 48:205–223

    Google Scholar 

  • Li YL, Liu HC, Huangfu PP, He HY, Liu YZ (2018b) Early cretaceous lower crustal reworking in NE China: insights from geochronology and geochemistry of felsic igneous rocks from the Great Xing’an range. Int J Earth Sci 107(6):1955–1974

    Google Scholar 

  • Li ZZ, Qin KZ, Li GM, Ishihara S, Jin LY, Song GX, Meng ZJ (2014) Formation of the giant Chalukou porphyry Mo deposit in northern Great Xing’an Range, NE China: Partial melting of the juvenile lower crust in intra-plate extensional environment. Lithos 202:138–156

    Google Scholar 

  • Liu CF, Zhou ZG, Wang GS, Wu C, Li HY, Zhu Y, Jiang T, Liu WC, Ye BY (2018a) Geochronology and geochemistry of the Late Jurassic bimodal volcanic rocks from Hailisen area, central-southern Great Xing’an Range, Northeast China. Geol J 53(5):2099–2117

    Google Scholar 

  • Liu HC, Li YL, He HY, Huangfu PP, Liu YZ (2018b) Two-phase southward subduction of the Mongol-Okhotsk oceanic plate constrained by Permian-Jurassic granitoids in the Erguna and Xing’an massifs (NE China). Lithos 304:347–361

    Google Scholar 

  • Liu HC, Li YL, Wan ZF, Lai C-K (2020a) Early Neoproterozoic tectonic evolution of the Erguna Terrane (NE China) and its paleogeographic location in Rodinia supercontinent: Insights from magmatic and sedimentary record. Gondwana Res 88:185–200

    Google Scholar 

  • Liu HC, Li YL, Wu LW, Huangfu PP, Zhang M (2019) Geochemistry of high-Nb basalt-andesite in the Erguna Massif (NE China) and implications for the early Cretaceous back-arc extension. Geol J 54(1):291–307

    Google Scholar 

  • Liu J-L, Qin M-K, Cai Y-Q, Liu Z-Y, Zhang Z-M, Yao L (2020b) Late Mesozoic tectonic evolution of the southern Great Xing’an Range, northeastern China: constraints from detrital zircon U-Pb and Hf isotopes of Late Cretaceous sandstones in the southwestern Songliao Basin. Geol J 55(6):4415–4425

    Google Scholar 

  • Liu YF, Nie FJ, Jiang SH, Xue J, Hou WR, Yun F (2010) The Geochronology and Geochemical Features of Ore-hosting Granite in the Aryn nuur Molybdenum Deposit, Mongolia(abstract in english). Acta Geosci Sin 31(03):343–349

    Google Scholar 

  • Mao AQ, Sun DY, Gou J, Zheng H (2020) Genesis of Early-Middle Jurassic Intrusive Rocks in the Erguna Block (NE China) in Response to the Late-Stage Southward Subduction of the Mongol-Okhotsk Oceanic Plate: Constraints from Geochemistry and Zircon U-Pb Geochronology and Lu–Hf Isotopes. Minerals 10(4):372

    Google Scholar 

  • Mao JW, Zhou ZH, Wu G, Jiang SH, Liu CI, Li H, OuyangLiu HGJ (2013) Metallogenic regularity and minerogenetic series of ore deposits in Inner Mongolia and adjacent areas(abstract in english). Mineral Deposits 32(04):716–730

    Google Scholar 

  • McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102(3):358–374

    Google Scholar 

  • Meng E, Xu W, Yang D, Qiu K, Li C, Zhu H (2011) Zircon U-pb chronology, geochemistry of mesozoic volcanic rocks from the Lingquan basin in Manzhouli area, and its tectonic implications(abstract in english). Acta Petrol Sin 27(4):1209–1226

    Google Scholar 

  • Mi KF, Liu ZJ, Liu RB, Li CF, Wang JP, Peng RM (2018) U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of the intrusions from Wunugetushan porphyry deposit, Northeast China: implication for Triassic-Jurassic Cu-Mo mineralization in Mongolia-Erguna metallogenic belt. Int Geol Rev 60(4):496–512

    Google Scholar 

  • Mi KF, Lü ZC, Yan TJ, Zhao SJ, Yu HY (2020) SHRIMP U-Pb zircon geochronology and Hf isotope analyses of Middle Permian–early triassic intrusions in southern Manzhouli area, Northeast China: implications for the subduction of Mongol-Okhotsk plate beneath the Erguna massif. Int Geol Rev 62(5):549–567

    Google Scholar 

  • Miao LC, Liu DY, Zhang FQ, Fan WM, Shi YR, Xie HQ (2007) Zircon SHRIMP U-Pb ages of the “Xinghuadukou Group” in Hanjiayuanzi and Xinlin areas and the “Zhalantun Group” in Inner Mongolia. Da Hinggan Mt Chin Sci Bull 52(8):1112–1124

    Google Scholar 

  • Patiño Douce AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol Soc Lond Sp Publ 168(1):55–75

    Google Scholar 

  • Patino Douce AE, Harris N (1998) Experimental constraints on Himalayan Anatexis. J Pet 39(4):689–710

    Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of Metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Pet 36(4):891–931

    Google Scholar 

  • Roberts MP, Clemens JD (1993) Origin of high-Potassium, calc-alkaline, I-type granitoids. Geology 21(9):825–828

    Google Scholar 

  • Rudnick RL (1995) Making Continental-Crust. Nature 378(6557):571–578

    Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33(3):267–309

    Google Scholar 

  • Şengör AMC, Natal’in BA, Burtman VS (1993) Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364(6435):299–307

    Google Scholar 

  • Shao J, Li YF, Zhou YH, Wang HB, Zhang J (2015) Neo-Archaean magmatic event in Erguna Massif of Northeast China: Evidence from the Zircon LA-ICP-MS Dating of the Gneissic Monzogranite from the Drill. J Jilin Univ Earth Sci Ed 45(2):364–373

    Google Scholar 

  • Sheldrick TC, Barry TL, Millar IL, Barfod DN, Halton AM, Smith DJ (2020) Evidence for southward subduction of the Mongol-Okhotsk oceanic plate: Implications from Mesozoic adakitic lavas from Mongolia. Gondwana Res 79:140–156

    Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Miner Petrol 148(6):635–661

    Google Scholar 

  • Sorokin AA, Kotov AB, Kudryashov NM, Kovach VP (2016) Early Mesozoic granitoid and rhyolite magmatism of the Bureya Terrane of the Central Asian Orogenic Belt: age and geodynamic setting. Lithos 261:181–194

    Google Scholar 

  • Sun DY, Gou J, Wang TH, Ren YS, Liu YJ, Guo HY, Liu XM, Hu ZC (2013) Geochronological and geochemical constraints on the Erguna massif basement, NE China—subduction history of the Mongol-Okhotsk oceanic crust. Int Geol Rev 55(14):1801–1816

    Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Sp Publ 42(1):313–345

    Google Scholar 

  • Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45(1):29–44

    Google Scholar 

  • Tang J, Xu WL, Wang F, Wang W, Xu MJ, Zhang YH (2014) Geochronology and geochemistry of early-Middle Triassic magmatism in the Erguna Massif, NE China: constraints on the tectonic evolution of the Mongol-Okhotsk Ocean. Lithos 184:1–16

    Google Scholar 

  • Tang J, Xu WL, Wang F, Zhao S, Li Y (2015) Geochronology, geochemistry, and deformation history of Late Jurassic-Early Cretaceous intrusive rocks in the Erguna Massif, NE China: Constraints on the late Mesozoic tectonic evolution of the Mongol-Okhotsk orogenic belt. Tectonophysics 658:91–110

    Google Scholar 

  • Tang J, Xu WL, Wang F, Zhao S, Wang W (2016) Early Mesozoic southward subduction history of the Mongol-Okhotsk oceanic plate: Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Res 31:218–240

    Google Scholar 

  • Tang ZY, Sun DY, Gou J, Yang DG (2018) Geochronology, petrogenesis, and tectonic setting of Late Triassic volcanic rocks of the Hadataolegai Formation, central Great Xing'an Range, Northeast China. Island Arc 27(5):e12260

    Google Scholar 

  • Taylor SR, McLennan SM (1985) Continental crust: its composition and evolution. In: An examination of the geochemical record preserved in sedimentary rocks. Continental crust: its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks. Blackwell Scientific Publications

  • Thompson AB, Connolly JAD (1995) Melting of the continental crust: Some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. J Geophys Res Solid Earth 100(B8):15565–15579

    Google Scholar 

  • Van der Voo R, Spakman W, Bijwaard H (1999) Mesozoic subducted slabs under Siberia. Nature 397(6716):246–249

    Google Scholar 

  • Wang W, Tang J, Xu WL, Wang F (2015) Geochronology and geochemistry of Early Jurassic volcanic rocks in the Erguna Massif, northeast China: petrogenesis and implications for the tectonic evolution of the Mongol-Okhotsk suture belt. Lithos 218:73–86

    Google Scholar 

  • Watanabe Y, Stein HJ (2000) Re-Os ages for the Erdenet and Tsagaan Suvarga porphyry Cu-Mo deposits, Mongolia, and tectonic implications. Econ Geol 95(7):1537–1542

    Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Miner Petrol 95(4):407–419

    Google Scholar 

  • Wu FY, Jahn BM, Wilde S, Sun DY (2000) Phanerozoic crustal growth: U-Pb and Sr–Nd isotopic evidence from the granites in northeastern China. Tectonophysics 328(1):89–113

    Google Scholar 

  • Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC, Sun DY (2003) Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos 66(3–4):241–273

    Google Scholar 

  • Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA, Jahn BM (2011) Geochronology of the Phanerozoic granitoids in northeastern China. J Asian Earth Sci 41(1):1–30

    Google Scholar 

  • Wu G, Chen YJ, Sun FY, Li JC, Li ZT, Wang XJ (2008) Geochemistry of the Late Jurassic granitoids in the northern end area of Da Hinggan Mountains and their geological and prospecting implications. Acta Petrol Sin 24(4):899–910

    Google Scholar 

  • Wu G, Wang GR, Liu J, Zhou ZH, Li TG, Wu H (2014) Metallogenic series and ore-forming pedigree of main ore deposits in northern Great Xing’an Range. Miner Depos 33(6):1127–1150

    Google Scholar 

  • Xiao WJ, Windley BF, Hao J, Zhai MG (2003) Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt. Tectonics 22(6):1069

    Google Scholar 

  • Xu WL, Pei FP, Wang F, Meng E, Ji WQ, Yang DB, Wang W (2013) Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes. J Asian Earth Sci 74:167–193

    Google Scholar 

  • Yao L, Lü Z, Ye T, Pang Z, Jia H, Zhang Z, Wu Y, Li R (2017) Zircon U-Pb age, geochemical and Nd-Hf isotopic characteristics of quartz porphyry in the Baiyinchagan Sn polymetallic deposit, Inner Mongolia, southern Great Xing’an Range, China. Yanshi Xuebao/Acta Petrol Sin 33:3183–3199

    Google Scholar 

  • Yi ZY, Meert JG (2020) A Closure of the Mongol-Okhotsk Ocean by the Middle Jurassic: reconciliation of paleomagnetic and geological evidence. Geophys Res Lett 47(15):1–9

    Google Scholar 

  • Yu JJ, Wang F, Xu WL, Gao FH, Pei FP (2012) Early Jurassic mafic magmatism in the Lesser Xing’an–Zhangguangcai Range, NE China, and its tectonic implications: Constraints from zircon U-Pb chronology and geochemistry. Lithos 142–143:256–266

    Google Scholar 

  • Zhang KJ (2014) Genesis of the Late Mesozoic Great Xing’an Range Large Igneous Province in eastern central Asia: A Mongol-Okhotsk slab window model. Int Geol Rev 56(13):1557–1583

    Google Scholar 

  • Zhang YT, Sun FY, Wang S, Xin W (2018) Geochronology and geochemistry of Late Jurassic to Early Cretaceous granitoids in the northern Great Xing’an Range, NE China: petrogenesis and implications for late Mesozoic tectonic evolution. Lithos 312:171–185

    Google Scholar 

  • Zhao SJ, Yu HY, Shen L, Zhang M, Zhou YS, Liu ZH, Zhang YL (2018a) Determination and geological significance of Chaihe Formation of the Lower Jurassic in north Daxing’anling Range. Geol Bull China 37(07):1302–1314

    Google Scholar 

  • Zhao SJ, Yu HY, Zhou YS, Liu ZH, Zhang M, Pu LL, Wu ZH, Zhang YL (2018b) New Progress of 1: 50000 Geological and Mineral Resources Survey in Wuyinhurilemiao area, Inner Mongolia (translation in English). Geol Surv China 5(03):49–55

    Google Scholar 

  • Zhu MS, Zhang FC, Miao LC, Baatar M, Anaad C, Yang SH, Li XB (2016) Geochronology and geochemistry of the Triassic bimodal volcanic rocks and coeval A-type granites of the Olzit area, Middle Mongolia: Implications for the tectonic evolution of Mongol-Okhotsk Ocean. J Asian Earth Sci 122:41–57

    Google Scholar 

  • Zorin YA (1999) Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics 306(1):33–56

    Google Scholar 

Download references

Acknowledgements

We would like to thank Jianwei Xiao, Yuling Bai, and Tingting Zhang for their helps in field work, zircon U–Pb, and geochemical analyses. The work was financially supported by the National Key Research and Development Program of China (Grant No. 2017YFC0601303), and the Inner Mongolia Geological Exploration Foundation (Grant No. 201501YS01). geological projects of the Inner Mongolia Geological Survey and the China Geological Survey (18–1–KY02 and DD20160048–15, DD20160048–11, DD20160048, DD20160047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang Wu or Shengjin Zhao.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wu, G., Zhao, S. et al. Large-scale Late Triassic to Early Jurassic high εHf(t)–εNd(t) felsic rocks in the Ergun Massif (NE China): implications for southward subduction of the Mongol–Okhotsk oceanic slab and lateral crustal growth. Int J Earth Sci (Geol Rundsch) 110, 539–558 (2021). https://doi.org/10.1007/s00531-020-01969-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01969-8

Keywords

Navigation