Skip to main content
Log in

Preparation and Evaluation of 2 m Long Open Tubular Capillary Columns of 50 μm Internal Diameter for Separation of Peptides in Liquid Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A 2 m long open tubular column with a copolymer layer fabricated on the inner surface of silica capillary of 50 μm id has been prepared. A ligand with a terminal halogen was bound to the capillary inner surface via silanol-isocyanate reaction and an initiator moiety was introduced by reacting with the terminal halogen. Then a thick layer of linear copolymer chains was generated on the inner surface of capillary by reversible addition-fragmentation transfer polymerization of styrene and N-phenyl acrylamide. The resultant open tubular column exhibited a remarkably high separation efficiency for the separation of a synthetic mixture of five peptides in liquid capillary chromatography (in the pressure mode). The effect of monomer mixing ratio (styrene versus N-phenyl acrylamide) on the chromatographic separation efficiency has been studied. The column prepared with the optimum mixing ratio produced the number of theoretical plates (N) of 391,200 per column under the optimized elution pressure. The column to column repeatability estimated as relative standard deviation in plate count, retention factor, asymmetry factor, and resolution was found better than 3.0%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cheong WJ, Ali F, Kim YS, Lee JW (2013) Comprehensive overview of recent preparation and application trends of various open tubular capillary columns in separation science. J Chromatgr A 1308:1–24

    Article  CAS  Google Scholar 

  2. Mao ZK, Chen ZL (2019) Advances in capillary electro-chromatography. J Pharm Anal 9:227–237

    Article  Google Scholar 

  3. Mikšík I (2017) Capillary electrochromatography of proteins and peptides (2006–2015). J Sep Sci 40:251–271

    Article  Google Scholar 

  4. Guihen E (2017) Recent highlights in electro-driven separations-selected applications of alkylthiol gold nanoparticles in capillary electrophoresis and capillary electro-chromatography. Electrophoresis 38:2184–2192

    Article  CAS  Google Scholar 

  5. D’Orazio G, Asensio-Ramos M, Fanali C, Hernandez-Borges J, Fanali S (2006) Capillary electrochromatography in food analysis. Trends Anal Chem 82:250–267

    Article  Google Scholar 

  6. Christodoulou CPK, Nicolaou AJ, Stavrou IJ (2006) Enantioseparations in open-tubular capillary electrochromatography: Recent advances and applications. J Chromatgr A 1467:145–154

    Article  Google Scholar 

  7. Lam SC, Rodriguez ES, Haddad PR, Paull B (2019) Recent advances in open tubular capillary liquid chromatography. Analyst 144:3464–3482

    Article  CAS  Google Scholar 

  8. Li RN, Wang YN, Peng MH, Wang XY, Guo GS (2017) Preparation and application of porous layer open tubular capillary columns with narrow bore in liquid chromatography. Chin J Anal Chem 45:1865–1873

    Article  Google Scholar 

  9. Knob R, Kulsing C, Boysen RI, Macka M, Hearn MTW (2015) Surface-area expansion with monolithic open tubular columns. Trends Anal Chem 67:16–25

    Article  CAS  Google Scholar 

  10. Yue GH, Luo QZ, Zhang J, Wu SL, Karger BL (2007) Ultratrace LC/MS proteomic analysis using 10-μm-i.d. porous layer open tubular poly(styrene-divinylbenzene) capillary columns. Anal Chem 79:938–946

    Article  CAS  Google Scholar 

  11. Luo QZ, Yue GH, Valaskovic GA, Gu Y, Wu SL, Karger BL (2007) On-line 1D and 2D porous layer open tubular/LC-ESI-MS using 10-μm-i.d. poly(styrene-divinylbenzene) columns for ultrasensitive proteomic analysis. Anal Chem 79:6174–6181

    Article  CAS  Google Scholar 

  12. Luo QZ, Gu Y, Wu SL, Rejtar T, Karger BL (2008) Two-dimensional strong cation exchange/porous layer open tubular/mass spectrometry for ultratrace proteomic analysis using a 10 μm id poly(styrenedivinylbenzene) porous layer open tubular column with an on-line triphasic trapping column. Electrophoresis 29:1604–1611

    Article  CAS  Google Scholar 

  13. Luo QZ, Rejtar T, Wu SL, Karger BL (2009) Hydrophilic interaction 10 μm I.D. porous layer open tubular columns for ultratrace glycan analysis by liquid chromatography-mass spectrometry. J Chromatgr A 1216:1223–1231

    Article  CAS  Google Scholar 

  14. Wang DD, Hincapie M, Rejtar T, Karger BL (2011) Ultrasensitive characterization of site-specific glycosylation of affinity-purified haptoglobin from lung cancer patient plasma using 10 μm i.d. porous layer open tubular liquid chromatography-linear ion trap collision-induced dissociation/electron transfer dissociation mass spectrometry. Anal Chem 83:2029–2037

    Article  CAS  Google Scholar 

  15. Hara T, Futagami S, Eeltink S, Malsche WD, Baron GV, Desmet G (2016) Very high efficiency porous silica layer open-tubular capillary columns produced via in-column sol-gel processing. Anal Chem 88:10158–10166

    Article  CAS  Google Scholar 

  16. Hara T, Izumi Z, Nakao M, Hata K, Baron GV, Bamba T, Desmet G (2018) Silica-based hybrid porous layers to enhance the retention and efficiency of open tubular capillary columns with a 5 μm inner diameter. J Chromatgr A 1580:63–71

    Article  CAS  Google Scholar 

  17. Chen H, Yang Y, Qiao ZZ, Xiang PL, Ren JT, Meng YZ, Zhang KQ, Liu SR (2018) A narrow open tubular column for high efficiency liquid chromatographic separation. Analyst 143:2008–2011

    Article  CAS  Google Scholar 

  18. Yang Y, Chen H, Beckner MA, Xiang PL, Lu JJ, Cao CX, Liu SR (2018) Narrow, open tubular column for ultrahigh-efficiency liquid-chromatographic separation under elution pressure of less than 50 bar. Anal Chem 90:10676–10680

    Article  CAS  Google Scholar 

  19. Xiang PL, Yang Y, Zhao ZT, Chen ML, Liu SR (2019) Ultrafast gradient separation with narrow open tubular liquid chromatography. Anal Chem 91:10738–10743

    Article  CAS  Google Scholar 

  20. Xiang PL, Yang Y, Zhao ZT, Chen AP, Liu SR (2019) Experimentally validating open tubular liquid chromatography for a peak capacity of 2000 in 3 h. Anal Chem 91:10518–10523

    Article  CAS  Google Scholar 

  21. Ali F, Cheong WJ (2015) Open tubular capillary electrochromatography with an N-phenylacrylamide-styrene copolymer based stationary phase for the separation of anomers of glucose and structural isomers of maltotriose. J Sep Sci 38:1763–1770

    Article  CAS  Google Scholar 

  22. Ali F, Cheong WJ (2016) High efficiency robust open tubular capillary electrochromatography column for the separation of peptides. Bull Korean Chem Soc 37:1374–1377

    Article  CAS  Google Scholar 

  23. Ali A, Cheong WJ (2017) Open tubular capillary column of 50 μm internal diameter with a very high separation efficiency for the separation of peptides in CEC and LC. J Sep Sci 50:2654–2661

    Article  Google Scholar 

  24. Zhang XW, Yang J, Liu SF, Xie ZH (2011) Branched polyethyleneimine bonded tentacle-type polymer stationary phase for peptides and proteins separations by open tubular capillary electrochromatography. J Sep Sci 23:3383–3391

    Article  Google Scholar 

  25. Matyska MT, Pesek JJ, Boysen RI, Hearn MTW (2001) Characterization of open tubular capillary electrochromatography columns for the analysis of synthetic peptides using isocratic conditions. Anal Chem 21:5116–5125

    Article  Google Scholar 

  26. Hamer M, Yone A, Rezzano I (2012) Gold nanoparticle-coated capillaries for protein and peptide analysis on open tubular capillary electrochromatography. Electrophoresis 33:334–339

    Article  CAS  Google Scholar 

  27. Yang YZ, Boysen RI, Matyska MT, Pesek JJ, Hearn MTW (2007) Open-tubular capillary electrochromatography coupled with electrospray ionization mass spectrometry for peptide analysis. Anal Chem 79:4942–4949

    Article  CAS  Google Scholar 

  28. Qu QS, Liu YY, Shi WJ, Yan C, Tang XQ (2015) Tunable thick porous silica coating fabricated by multilayer-by-multilayer bonding of silica nanoparticles for open tubular capillary chromatographic separation. J Chromatogr A 19:25–31

    Article  Google Scholar 

  29. Liu X, Sun SC, Nie RB, Ma JC, Qu QS, Yang L (2018) Highly uniform porous silica layer open-tubular capillary columns produced via in-situ biphasic sol-gel processing for open-tubular capillary electrochromatography. J Chromatogr A 1538:86–93

    Article  CAS  Google Scholar 

  30. Zhang ZB, Peuchen EH, Dovichi NJ (2017) Surface-confined aqueous reversible addition-fragmentation chain transfer (SCARAFT) polymerization method for preparation of coated capillary leads to over 10 000 peptides identified from 25 ng HeLa digest by using capillary zone electrophoresis-tandem mass spectrometry. Anal Chem 89:6774–6780

    Article  CAS  Google Scholar 

  31. Zhang ZB, Hebert AS, Westphall MS, Qu YY, Coon JJ, Dovichi NJ (2018) Production of over 27 000 peptide and nearly 4400 protein dentifications by single-shot capillary-zone electrophoresis-mass spectrometry via combination of a very-low-electroosmosis coated capillary, a third-generation electrokinetically-pumped sheath-low nanospray interface, an orbitrap fusion Lumos Tribrid mass spectrometer, and an advanced-Peak-determination algorithm. Anal Chem 90:12090–12093

    Article  CAS  Google Scholar 

  32. Zhang ZB, Hebert AS, Westphall MS, Coon JJ, Dovichi NJ (2019) Single-shot capillary zone electrophoresis-tandem mass spectrometry produces over 4400 phosphopeptide identifications rom a 220 ng sample. J Proteome Res 18:3166–3173

    Article  CAS  Google Scholar 

  33. Forster S, Kolmar H, Altmaier S (2013) Performance evaluation of thick film open tubular silica capillary by reversed phase liquid chromatography. J Chromatogr A 1283:110–115

    Article  CAS  Google Scholar 

  34. Forster S, Kolmar H, Altmaier S (2012) Synthesis and characterization of new generation open tubular silica capillaries for liquid chromatography. J Chromatogr A 1265:88–94

    Article  CAS  Google Scholar 

  35. Aydoğan C (2018) Chiral separation and determination of amino acid enantiomers in fruit juice by open-tubular nano liquid chromatography. Chirality 30:1144–1149

    Article  Google Scholar 

  36. Zaidi SA, Cheong WJ (2009) Long open tubular molecule imprinted polymer capillary columns with excellent separation efficiencies in chiral and nonchiral separation by capillary electrochromatography. Electrophoresis 30:1603–1607

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) (2016 R1D1A1B03930174 and 2016 M3A9E1918324).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Jo Cheong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Sun, G., Kim, J.S. et al. Preparation and Evaluation of 2 m Long Open Tubular Capillary Columns of 50 μm Internal Diameter for Separation of Peptides in Liquid Chromatography. Chromatographia 84, 257–266 (2021). https://doi.org/10.1007/s10337-020-04003-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-04003-w

Keywords

Navigation