Skip to main content
Log in

Photocatalytic Conversion of Xylose to Xylitol over Copper Doped Zinc Oxide Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In the present investigation, photocatalytic conversion of xylose by Copper (Cu) doped Zinc oxide (ZnO) was investigated under Ultraviolet Light emitting diode (UVA-LED) illumination. Photocatalysts were synthesized successfully by chemical precipitation method. The synergistic effect of 5 wt% Cu doped ZnO and addition of glycerol as oxygen scavenger improved conversion. The results from our study showed that %conversion of xylose, glycerol are 33.72%, 33.61% respectively and % product yield of 88.79% of Dihydroxyacetone(DHA), 19.87% of xylitol and 13.29% of erythritol were achieved when 1.66 g/L of catalyst were used in ambient conditions under 7 h of UVA-LED illumination. The varied temperature to 50 ± 2 °C had decreased effect on the product yield when compared to that of the reaction carried out at 30 ± 2 °C. High Resolution Mass spectrometry results confirmed the presence of the products xylitol, erythritol and DHA formed during the course of the photocatalytic reaction.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shrotri A, Kobayashi H, Fukuoka A (2017) Catalytic conversion of structural carbohydrates and lignin to chemicals, 1st edn. Elsevier Inc., Japan

    Google Scholar 

  2. Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev 21:506–523

    Article  CAS  Google Scholar 

  3. Chen DH, Ye X, Li K (2005) Oxidation of PCE with a UV LED photocatalytic reactor. Chem Eng Technol. https://doi.org/10.1002/ceat.200407012

    Article  Google Scholar 

  4. Fuente-Hernandez A, Corcos P-O, Beauchet R, Lavoie J-M (2013) Biofuels and co-products out of hemicelluloses. In: Fang Z (ed) Liquid, gaseous and solid biofuels—conversion techniques, Intech publishing

  5. Gallo JMR, Trapp MA (2017) The chemical conversion of biomass-derived saccharides: an overview. a2—1,198. J Braz Chem Soc 28:1586–1607. https://doi.org/10.21577/0103-5053.20170009

    Article  CAS  Google Scholar 

  6. Heikkilä H, Puuppo O, Tylli M, Nikander H, Nygrèn J, Lindroos M, Eroma OP (1997) Method for producing xylitol. Patent WO97/49659

  7. Mikkola JP, Salmi T (2001) Three-phase catalytic hydrogenation of xylose to xylitol—prolonging the catalyst activity by means of on-line ultrasonic treatment. Catal Today. https://doi.org/10.1016/S0920-5861(00)00530-7

    Article  Google Scholar 

  8. Mikkola JP, Salmi T (1999) In-situ ultrasonic catalyst rejuvenation in three-phase hydrogenation of xylose. Chem Eng Sci. https://doi.org/10.1016/S0009-2509(99)00058-5

    Article  Google Scholar 

  9. Ghaznavi T, Neagoe C, Patience GS (2014) Partial oxidation of d-xylose to maleic anhydride and acrylic acid over vanadyl pyrophosphate. Biomass Bioenergy. https://doi.org/10.1016/j.biombioe.2014.09.029

    Article  Google Scholar 

  10. Hernandez-Mejia C, Gnanakumar ES, Olivos-Suarez A et al (2016) Ru/TiO2-catalysed hydrogenation of xylose: the role of the crystal structure of the support. Catal Sci Technol. https://doi.org/10.1039/c5cy01005e

    Article  Google Scholar 

  11. Xia H, Zhang L, Hu H et al (2020) Efficient hydrogenation of xylose and hemicellulosic hydrolysate to xylitol over Ni–Re bimetallic nanoparticle catalyst. Nanomaterials. https://doi.org/10.3390/nano10010073

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zada B, Chen M, Chen C et al (2017) Recent advances in catalytic production of sugar alcohols and their applications. Sci China Chem 60:853–869

    Article  CAS  Google Scholar 

  13. Colmenares JC, Luque R (2014) Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chem Soc Rev 43:765–778

    Article  CAS  Google Scholar 

  14. Granone LI, Sieland F, Zheng N et al (2018) Photocatalytic conversion of biomass into valuable products: a meaningful approach? Green Chem. https://doi.org/10.1039/c7gc03522e

    Article  Google Scholar 

  15. Liu X, Duan X, Wei W et al (2019) Photocatalytic conversion of lignocellulosic biomass to valuable products. Green Chem 21:4266–4289. https://doi.org/10.1039/c9gc01728c

    Article  CAS  Google Scholar 

  16. Li S-H, Liu S, Colmenares JC, Xu Y-J (2016) A sustainable approach for lignin valorization by heterogeneous photocatalysis. Green Chem 18:594–607. https://doi.org/10.1039/C5GC02109J

    Article  CAS  Google Scholar 

  17. Kenanakis G, Giannakoudakis Z, Vernardou D et al (2010) Photocatalytic degradation of stearic acid by ZnO thin films and nanostructures deposited by different chemical routes. Catal Today. https://doi.org/10.1016/j.cattod.2010.02.054

    Article  Google Scholar 

  18. Kuriakose S, Satpati B, Mohapatra S (2014) Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method. Phys Chem Chem Phys. https://doi.org/10.1039/c4cp01315h

    Article  PubMed  Google Scholar 

  19. Akpan UG, Hameed BH (2010) The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl Catal A Gen 375:1–11

    Article  CAS  Google Scholar 

  20. Kouklin N (2008) Cu-doped ZnO nanowires for efficient and multispectral photodetection applications. Adv Mater. https://doi.org/10.1002/adma.200701071

    Article  Google Scholar 

  21. Yi G, Zhang Y (2012) One-pot selective conversion of hemicellulose (Xylan) to xylitol under mild conditions. ChemSusChem 5:1383–1387. https://doi.org/10.1002/cssc.201200290

    Article  CAS  PubMed  Google Scholar 

  22. Vaiano V, Iervolino G, Rizzo L (2018) Cu-doped ZnO as efficient photocatalyst for the oxidation of arsenite to arsenate under visible light. Appl Catal B Environ 238:471–479. https://doi.org/10.1016/j.apcatb.2018.07.026

    Article  CAS  Google Scholar 

  23. Díaz-Álvarez A, Cadierno V (2013) Glycerol: a promising green solvent and reducing agent for metal-catalyzed transfer hydrogenation reactions and nanoparticles formation. Appl Sci 3:55–69. https://doi.org/10.3390/app3010055

    Article  Google Scholar 

  24. Natarajan TS, Natarajan K, Bajaj HC, Tayade RJ (2011) Energy efficient UV-LED source and TiO2 nanotube array-based reactor for photocatalytic application. Ind Eng Chem Res. https://doi.org/10.1021/ie200493k

    Article  Google Scholar 

  25. Shie JL, Lee CH, Chiou CS et al (2008) Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium oxide photocatalyst. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2007.11.043

    Article  PubMed  Google Scholar 

  26. Gupta A, Pandey A, Kumar A (2015) Wet chemical synthesis and characterization of copper doped zinc oxide particle. J Chem Pharm Res 7:532–537

    CAS  Google Scholar 

  27. Rahmati A, Balouch Sirgani A, Molaei M, Karimipour M (2014) Cu-doped ZnO nanoparticles synthesized by simple co-precipitation route. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2014-14250-8

    Article  Google Scholar 

  28. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol 199:76–82. https://doi.org/10.1016/j.biortech.2015.08.030

    Article  CAS  PubMed  Google Scholar 

  29. Ashokkumar M, Muthukumaran S (2014) Microstructure and band gap tailoring of Zn0.96-xCu0.04CoxO (0 ≤ x ≤ 0.04) nanoparticles prepared by co-precipitation method. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2013.10.246

    Article  Google Scholar 

  30. Sakai K, Kakeno T, Ikari T et al (2006) Defect centers and optical absorption edge of degenerated semiconductor ZnO thin films grown by a reactive plasma deposition by means of piezoelectric photothermal spectroscopy. J Appl Phys. https://doi.org/10.1063/1.2173040

    Article  Google Scholar 

  31. Chen Q, Wang Y, Zheng M et al (2018) Nanostructures confined self-assembled in biomimetic nanochannels for enhancing the sensitivity of biological molecules response. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-018-0101-2

    Article  Google Scholar 

  32. Jiang T, Wang Y, Meng D et al (2014) Controllable fabrication of CuO nanostructure by hydrothermal method and its properties. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2014.05.116

    Article  Google Scholar 

  33. Choi S, Do JY, Lee JH et al (2018) Optical properties of Cu-incorporated ZnO (CuxZnyO) nanoparticles and their photocatalytic hydrogen production performances. Mater Chem Phys 205:206–209. https://doi.org/10.1016/j.matchemphys.2017.11.022

    Article  CAS  Google Scholar 

  34. Labhane PK, Huse VR, Patle LB et al (2015) Synthesis of Cu doped ZnO nanoparticles: crystallographic, optical, FTIR, morphological and photocatalytic study. J Mater Sci Chem Eng 03:39–51. https://doi.org/10.4236/msce.2015.37005

    Article  CAS  Google Scholar 

  35. Kadam AN, Kim TG, Shin DS et al (2017) Morphological evolution of Cu doped ZnO for enhancement of photocatalytic activity. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2017.03.150

    Article  Google Scholar 

  36. Payormhorm J, Chuangchote S, Kiatkittipong K et al (2017) Xylitol and gluconic acid productions via photocatalytic-glucose conversion using TiO2 fabricated by surfactant-assisted techniques: effects of structural and textural properties. Mater Chem Phys 196:29–36. https://doi.org/10.1016/j.matchemphys.2017.03.058

    Article  CAS  Google Scholar 

  37. Estahbanati MRK, Feilizadeh M, Iliuta MC (2017) Photocatalytic valorization of glycerol to hydrogen: optimization of operating parameters by artificial neural network. Appl Catal B Environ 209:483–492. https://doi.org/10.1016/j.apcatb.2017.03.016

    Article  CAS  Google Scholar 

  38. Liu Q, Zhang T, Liao Y et al (2017) Production of C5/C6 sugar alcohols by hydrolytic hydrogenation of raw lignocellulosic biomass over Zr based solid acids combined with Ru/C. ACS Sustain Chem Eng 5:5940–5950. https://doi.org/10.1021/acssuschemeng.7b00702

    Article  CAS  Google Scholar 

  39. Mishra DK, Dabbawala AA, Hwang JS (2013) Ruthenium nanoparticles supported on zeolite y as an efficient catalyst for selective hydrogenation of xylose to xylitol. J Mol Catal A Chem 376:63–70. https://doi.org/10.1016/j.molcata.2013.04.011

    Article  CAS  Google Scholar 

  40. Liu C-J, Zhu N-N, Ma J-G, Cheng P (2019) Toward green production of chewing gum and diet: complete hydrogenation of xylose to xylitol over ruthenium composite catalysts under mild conditions. Research 2019:1–9. https://doi.org/10.34133/2019/5178573

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, CSIR-CFTRI for his support. Authors thank Mr. Rajesh for glass fabrication of the photocatalytic reactor set-up, Mr. Bavani Eswaran and Mr. Padmere Mukund Laxman for their support for extended sample analysis facilities. Authors also thank Dr. Basavarajappa H.T, Professor (Department of Earth Science), University of Mysore for his support on Spectral radiometer facility. Rohini B thanks UGC-Rajiv Gandhi National Fellowship, New Delhi for her senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Umesh Hebbar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1021 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohini, B., Hebbar, H.U. Photocatalytic Conversion of Xylose to Xylitol over Copper Doped Zinc Oxide Catalyst. Catal Lett 151, 2583–2594 (2021). https://doi.org/10.1007/s10562-020-03499-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03499-z

Keywords

Navigation