Skip to main content
Log in

A combinatorial Yamabe problem on two and three dimensional manifolds

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we define a new discrete curvature on two and three dimensional triangulated manifolds, which is a modification of the well-known discrete curvature on these manifolds. The new definition is more natural and respects the scaling exactly the same way as Gauss curvature does. Moreover, the new discrete curvature can be used to approximate the Gauss curvature on surfaces. Then we study the corresponding constant curvature problem, which is called the combinatorial Yamabe problem, by the corresponding combinatorial versions of Ricci flow and Calabi flow for surfaces and Yamabe flow for 3-dimensional manifolds. The basic tools are the discrete maximal principle and variational principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alsing, P.M., McDonald, J.R., Miller, W.A.: The simplicial Ricci tensor. Class. Quantum Grav. 28(3), 1825–1841 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Andreev, E.M.: On convex polyhedra of finite volume in Lobac̆evskiĭ spaces. Math. USSR-Sb. 12, 255–259 (1970)

    Article  Google Scholar 

  3. Andreev, E.M.: On convex polyhedra in Lobac̆evskiĭ spaces. Math. USSR-Sb. 10, 412–440 (1970)

    Article  Google Scholar 

  4. Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55(3), 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  5. Besse, A.: Einstein Manifolds. Reprint of the 1987 edition, Classics in Mathematics. Springer-Verlag, Berlin (2008)

    Google Scholar 

  6. Bauer, F., Horn, P., Lin, Y., Lippner, G., Mangoubi, D., Yau, S.-T.: Li-Yau inequality on graphs. J. Differ. Geom. 99(3), 359–405 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Bowers, P. L., Stephenson, K.: Uniformizing Dessins and Belyĭ Maps Via Circle Packing. Memoirs of the American Mathematical Society, vol. 170(805), xii+97 p. (2004)

  8. Brendle, S.: Convergence of the Yamabe flow for arbitrary initial energy. J. Differ. Geom. 69(2), 217–278 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Brendle, S.: Convergence of the Yamabe flow in dimension 6 and higher. Invent. Math. 170(3), 541–576 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calabi, E.: Extremal Kähler metrics, In: Seminar on Differential Geometry, pp. 259–290, Annals of Mathemetics Studies vol. 102, Princeton University Press, Princeton, NJ (1982)

  11. Champion, D., Glickenstein, D., Young, A.: Regge’s Einstein-Hilbert functional on the double tetrahedron. Differ. Geo. Appl. 29, 108–124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheeger, J., Müller, W., Schrader, R.: On the curvature of piecewise flat spaces. Commun. Math. Phys. 92, 405–454 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang, S.C.: Global existence and convergence of solutions of Calabi flow on surfaces of genus \(h\ge 2\). J. Math. Kyoto Univ. 40(2), 363–377 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Chen, X.X.: Calabi flow in Riemann surfaces revisited: a new point of view. Internat. Math. Res. Notices 6, 275–297 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, X.X., Lu, P., Tian, G.: A note on uniformization of Riemann surfaces by Ricci flow. Proc. Am. Math. Soc. 134(11), 3391–3393 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chow, B.: The Ricci flow on the \(2\)-sphere. J. Differ. Geom. 33, 325–334 (1991)

    MathSciNet  MATH  Google Scholar 

  17. Chow, B.: The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature. Commun. Pure Appl. Math. 45(8), 1003–1014 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chow, B., Luo, F.: Combinatorial Ricci flows on surfaces. J. Differ. Geom. 63, 97–129 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Chow, B., Knopf, D.:The Ricci Flow: An Introduction, In: Mathemetics Surveys Monographs, vol. 110, American Mathemetical Society, Providence, RI, (2004)

  20. Chruściel, P.T.: Semi-global existence and convergence of solutions of the Robinson-Trautman (2-dimensional Calabi) equation. Commun. Math. Phys. 137, 289–313 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chung, F.R.K.: Spectral graph theory, CBMS Regional Conference Series in Mathematics, 92. American Mathematical Society, Providence, RI (1997)

  22. Cooper, D., Rivin, I.: Combinatorial scalar curvature and rigidity of ball packings. Math. Res. Lett. 3, 51–60 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. de Verdière, Y.C.: Un principe variationnel pour les empilements de cercles. Invent. Math. 104(3), 655–669 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ge, H.: Combinatorial Calabi flows on surfaces. Trans. Am. Math. Soc. 370(2), 1377–1391 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ge, H., Jiang, W.: A Combinatorial Yamabe Flow with Normalization, Preprint

  26. Ge, H., Xu, X.: \(2\)-dimensional combinatorial Calabi flow in hyperbolic background geometry. Differ. Geom. Appl. 47, 86–98 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ge, H., Xu, X.: Discrete quasi-Einstein metrics and combinatorial curvature flows in 3-dimension. Adv. Math. 267, 470–497 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ge, H., Xu, X.: On a combinatorial curvature for surfaces with inversive distance circle packing metrics. J. Funct. Anal. 275(3), 523–558 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Glickenstein, D.: A combinatorial Yamabe flow in three dimensions. Topology 44(4), 791–808 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Glickenstein, D.: A maximum principle for combinatorial Yamabe flow. Topology 44(4), 809–825 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Glickenstein, D.: Discrete conformal variations and scalar curvature on piecewise flat two and three dimensional manifolds. J. Differ. Geom. 87, 201–238 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Glickenstein, D.: Geometric triangulations and discrete Laplacians on manifolds, arXiv:math/0508188v1 [math.MG]

  33. Gu, X.D., Luo, F., Sun, J., Wu, T.: A discrete uniformization theorem for polyhedral surfaces. J. Differ. Geom. 109(2), 223–256 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Gu, X.D., Guo, R., Luo, F., Sun, J., Wu, T.: A discrete uniformization theorem for polyhedral surfaces II. J. Differ. Geom. 109(3), 431–466 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Guo, R.: Local rigidity of inversive distance circle packing. Trans. Am. Math. Soc. 363, 4757–4776 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  37. Hamilton, R.S., Ricci, The, flow on surfaces, Mathematics and General Relativity (Santa Cruz, CA, : Contemporary Mathematics, vol. 71. American Mathematical Society, Providence, R I 1988, 237–262 (1986)

  38. Hamilton, R. S.: Lectures on Geometric Flows, unpublished manuscript (1989)

  39. He, Z.: Rigidity of infinite disk patterns. Ann. of Math. 149, 1–33 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. He, Z., Schramm, O.: Rigidity of circle domains whose boundary has -finite linear measure. Invent. Math. 115, 297–310 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hirani, A.N.: Discrete exterior calculus. California Institute of Technology, Pasadena, CA (May 2003). Ph.D. Thesis

  42. Kazdan, J.L., Warner, F.W.: Curvature functions for compact \(2\)-manifolds. Ann. Math. (2) 99, 14–47 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  43. Koebe, P.: Kontaktprobleme der konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig, Math.-phys. Kl. 88, 141–164 (1936)

    MATH  Google Scholar 

  44. Lee, J., Parker, T.: The Yamabe problem. Bull. Am. Math. Soc. (N.S.) 17(1), 37–91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  45. Luo, F.: Combinatorial Yamabe flow on surfaces. Commun. Contemp. Math. 6(5), 765–780 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Luo, F.: A combinatorial curvature flow for compact 3-manifolds with boundary. Electron. Res. Announc. Am. Math. Soc. 11, 12–20 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Luo, F.: Rigidity of polyhedral surfaces, III. Geom. Topol. 15, 2299–2319 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Marden, A., Rodin, B.: On Thurstons formulation and proof of Andreevs theorem, In: Computational methods and function theory (Valparaso, 1989), pp. 103-115, Lecture Notes in Math., 1435, Springer, Berlin (1990)

  49. McDonald, J. R., Miller, W. A., Alsing, P. M., Gu, X. D., Wang, X., Yau, S-T: On exterior calculus and curvature in piecewise-flat manifolds, arXiv:1212.0919 [math.DG]

  50. Miller, W.A., McDonald, J.R., Alsing, P.M., Gu, X.D., Yau, S.-T.: Simplicial Ricci flow. Commun. Math. Phys. 329(2), 579–608 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications, preprint, arXiv:math.DG/0211159

  52. Perelman, G.: Ricci flow with surgery on three-manifolds, preprint, arXiv:math.DG/0303109

  53. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint, arXiv:math.DG/0307245

  54. Pontryagin, L.S.: Ordinary Differential Equations. Addison-Wesley Publishing Company Inc., Reading (1962)

    MATH  Google Scholar 

  55. Regge, T.: General relativity without coordinates. II Nuovo Cimento 19, 558–571 (1961)

    Article  MathSciNet  Google Scholar 

  56. Rivin, I.: An extended correction to Combinatorial Scalar Curvature and Rigidity of Ball Packings, (by D. Cooper and I. Rivin), arXiv:math/0302069v2 [math.MG]

  57. Schramm, O.: Rigidity of infinite (circle) packings. J. A. M. S. 4, 127–149 (1991)

    MathSciNet  MATH  Google Scholar 

  58. Schoen, R.M.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Diff. Geom. 20, 479–595 (1984)

    MathSciNet  MATH  Google Scholar 

  59. Spivak, M.: A comprehensive introduction to differential geometry, vol. II. 2nd edn. Publish or Perish, Inc., Wilmington, Del., 1979. xv+423 pp. ISBN: 0-914098-83-7 Addison-Wesley Publishing Company Inc., Reading (1962)

  60. Springborn, B.: A variational principle for weighted Delaunay triangulations and hyperideal polyhedra. J. Differ. Geom. 78(2), 333–367 (2008)

    MathSciNet  MATH  Google Scholar 

  61. Thurston, W.: Geometry and topology of 3-manifolds, Princeton lecture notes 1976, http://www.msri.org/publications/books/gt3m

  62. Trudinger, N.S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scu. Norm. Sup. Pisa 22, 265–274 (1968)

    MathSciNet  MATH  Google Scholar 

  63. Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960)

    MathSciNet  MATH  Google Scholar 

  64. Ye, R.: Global existence and convergence of Yamabe flow. J. Diff. Geom. 39, 35–50 (1994)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author would like to thank BICMR, Professor Gang Tian and Professor Yanxun Chang for constant support and encouragement. The research of the first author is supported by National Natural Science Foundation of China under grant no. 11871094. The research of the second author is partially supported by Fundamental Research Funds for the Central Universities and National Natural Science Foundation of China under grant no. 11301402 and 11301399. He would also like to thank Professor Guofang Wang for the invitation to the Institute of Mathematics of the University of Freiburg and for his encouragement and many useful conversations during the work. Both authors would also like to thank Dr. Dongfang Li for many helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Xu.

Additional information

Communicated by J. Jost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, H., Xu, X. A combinatorial Yamabe problem on two and three dimensional manifolds. Calc. Var. 60, 20 (2021). https://doi.org/10.1007/s00526-020-01900-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01900-8

Mathematics Subject Classification

Navigation