Skip to main content
Log in

Some interior regularity estimates for solutions of complex Monge–Ampère equations on a ball

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider the Dirichlet problem of a complex Monge–Ampère equation on a ball in \({\mathbb {C}}^n\). With \({\mathcal {C}}^{1,\alpha }\) (resp. \({\mathcal {C}}^{0,\alpha }\)) data, we prove an interior \({\mathcal {C}}^{1,\alpha }\) (resp. \({\mathcal {C}}^{0,\alpha }\)) estimate for the solution. These estimates are generalized versions of the Bedford–Taylor interior \({\mathcal {C}}^{1,1}\) estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubin, T.: Equations du type de Monge–Ampère surles varietes Kähleriennes compactes. C. R. Acad. Sci. Paris 283, 119–121 (1976)

    MathSciNet  MATH  Google Scholar 

  2. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge–Ampère operator. Invent. Math. 37, 1–44 (1976)

    Article  MathSciNet  Google Scholar 

  3. Bedford, E., Taylor, B.A.: Variational properties of the complex Monge–Ampère equation, II. Intrinsic norms. Am. J. Math. 101, 1131–1166 (1979)

    Article  Google Scholar 

  4. Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 37(1–2), 1–40 (1982)

    Article  MathSciNet  Google Scholar 

  5. Blocki, Z.: Interior regularity of the complex Monge–Ampère equation in convex domains. Duke Math. J. 105(1), 167–181 (2000)

    Article  MathSciNet  Google Scholar 

  6. Caffarelli, L., Kohn, J.J., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge–Ampère and uniformly elliptic equations. Commun. Pure Appl. Math. 38(2), 209–252 (1985)

    Article  Google Scholar 

  7. Chen, X.X., He, W.: The complex Monge–Ampère equation on compact Kähler manifolds. Math. Ann. 354(4), 1583–1600 (2012)

    Article  MathSciNet  Google Scholar 

  8. Cheng, S.Y., Yau, S.T.: On the existence of a complete Kähler–Einstein metric on non-compact complex manifolds and the regularity of Fefferman’s equation. Commun. Pure Appl. Math. 33, 507–544 (1980)

    Article  Google Scholar 

  9. Dinew, S., Kolodziej, S.: Pluripotential Estimates on Compact Hermitian Manifolds, Advanced Lectures in Mathematics, vol. 21, Advances in Geometric Analysis. International Press, Boston (2012)

  10. Dinew, S., Zhang, X., Zhang, X.W.: The \(C^{2,\alpha }\) estimate of complex Monge–Ampère equation. Indiana Univ. Math. J. 60(5), 1713–1722 (2011)

    Article  MathSciNet  Google Scholar 

  11. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    Book  Google Scholar 

  12. Guan, B.: The Dirichlet problem for complex Monge–Ampère equations and regularity of the pluricomplex Green’s function. Commun. Anal. Geom. 8, 213–218 (2000)

    Article  Google Scholar 

  13. Guan, B., Li, Q.: Complex Monge–Ampère equations and totally real submanifolds. Adv. Math. 225, 1185–1223 (2010)

    Article  MathSciNet  Google Scholar 

  14. Guan, P.F.: The extremal function associated to intrinsic norms. Ann. Math. 156(1), 197–211 (2002)

    Article  MathSciNet  Google Scholar 

  15. Kobayashi, R.: Kähler–Einstein metrics on an open algebraic manifold. Osaka. J. Math. 21, 399–418 (1984)

    MathSciNet  MATH  Google Scholar 

  16. Kolodziej, S.: The complex Monge–Ampère equation. Acta Math. 180, 69–117 (1998)

    Article  MathSciNet  Google Scholar 

  17. Kolodziej, S.: Hölder continuity of solutions to the complex Monge–Ampère equation with the right hand side in \(L^p\). The case of compact Kähler manifolds. Math. Ann. 342(2), 379–386 (2008)

    Article  MathSciNet  Google Scholar 

  18. Kolodziej, S., Nguyen, N.-C.: Weak solutions to the complex Monge-Ampère equation on Hermitian manifolds. In: Feehan, P., Song, J., Weinkove, B., Wentworth, R. (eds.) Analysis, complex geometry, and mathematical physics: in honor of Duong H. Phong, Contemporary Mathematics, vol. 644, pp. 141–158. American Mathematical Society, Providence, RI (2015)

    Chapter  Google Scholar 

  19. Li, C., Li, J.Y., Zhang, X.: A \({\cal{C}}^{2,\alpha }\) estimate of complex Monge–Ampère equation. J. Funct. Anal. 275(1), 149–169 (2018)

    Article  MathSciNet  Google Scholar 

  20. Mok, N., Yau, S.T.: Completeness of the Kähler–Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions. Proc. Symp. Pure Math. 39, 41–59 (1983)

    Article  Google Scholar 

  21. Nguyen, N.-C.: The complex Monge–Amp\(\acute{{\rm r}}\)e type equation on compact Hermitian manifolds and applications. Adv. Math. 286, 240–285 (2016)

    Article  MathSciNet  Google Scholar 

  22. Tian, G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101(1), 101–172 (1990)

    Article  MathSciNet  Google Scholar 

  23. Tian, G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130(1), 1–37 (1997)

    Article  MathSciNet  Google Scholar 

  24. Tian, G.: On the existence of solutions of a class of Monge–Ampère equations. Acta Math. Sin. 4(3), 250–265 (1988)

    Article  Google Scholar 

  25. Tian, G., Yau, S.T.: Existence of Kähler–Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry. In: Yau, S.T. (ed.) Mathematical aspects of string theory, pp. 575–627. World Scientific, Singapore (1987)

    Google Scholar 

  26. Tian, G., Yau, S.T.: Kähler–Einstein metrics on complex surfaces with \(c_1(M)\) positive. Commun. Math. Phys. 112, 175–203 (1987)

    Article  Google Scholar 

  27. Tian, G., Yau, S.T.: Complete Kähler manifolds with zero Ricci curvature I. J. Am. Math. Soc. 3, 579–609 (1990)

    MATH  Google Scholar 

  28. Tian, G., Yau, S.T.: Complete Kähler manifolds with zero Ricci curvature II. Invent. Math. 106, 27–60 (1991)

    Article  MathSciNet  Google Scholar 

  29. Tosatti, V., Wang, Y., Weinkove, B., Yang, X.K.: \({\cal{C}}^{2, \alpha }\) estimate for nonlinear elliptic equations in complex and almost complex geometry. Calc. Var. PDE 54(1), 431–453 (2015)

    Article  Google Scholar 

  30. Wang, Y.: On the \(C^{2, \alpha }\)-regularity of the complex Monge–Ampère equation. Math. Res. Lett. 19(4), 939–946 (2012)

    MathSciNet  Google Scholar 

  31. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Article  Google Scholar 

  32. Zhang, X., Zhang, X.W.: Regularity estimates of solutions to complex Monge–Ampère equations on Hermitian manifolds. J. Funct. Anal. 260(7), 2004–2026 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Zhang.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors are partially supported by NSF in China No. 11625106 and 11721101. The research was partially supported by the project “Analysis and Geometry on Bundle” of Ministry of Science and Technology of the People’s Republic of China, No. SQ2020YFA070080.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, J. & Zhang, X. Some interior regularity estimates for solutions of complex Monge–Ampère equations on a ball. Calc. Var. 60, 34 (2021). https://doi.org/10.1007/s00526-020-01911-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01911-5

Mathematics Subject Classification

Navigation