Skip to main content
Log in

Large solutions to quasilinear problems involving the p-Laplacian as p diverges

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we deal with large solutions to

$$\begin{aligned} {\left\{ \begin{array}{ll} u - \Delta _{p} u + \beta |\nabla u|^{q} =f&{} \text{ in } \,\Omega ,\\ u (x) = +\infty &{} \text{ on } \,\partial \Omega , \end{array}\right. } \end{aligned}$$

where \(\Omega \subset {\mathbb {R}}^N\) , with \(N\ge 1\), is a smooth, open, connected, and bounded domain, \(p \ge 2\), \(\beta >0\), \(p-1<q\le p\) and \(f\in C(\Omega )\cap L^{\infty }(\Omega )\). We are interested in studying their behavior as p diverges. Our main result states that, if, in some sense, the domain \(\Omega \) is large enough, such solutions converge locally uniformly to a limit function that turns out to be a large solution of a suitable limit equation (that involves the \(\infty \)-Laplacian). Otherwise, if \(\Omega \) is small, we have a complete blow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alarcón, S., Quaas, A.: Large viscosity solutions for some fully nonlinear equations. NoDEA Nonlinear Differ. Equ. Appl. 20, 1453–1472 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Modern Birkhäuser Classic. Springer, Berlin (1997)

    Book  Google Scholar 

  3. Bhattacharya, T., DiBenedetto, E., Manfredi, J.: Limits as \(p \rightarrow \infty \) of \(\Delta _p u_p=f\) and related extremal problems. Some topics in nonlinear PDEs (Turin, 1989). Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue, pp. 15–68 (1991)

  4. Birindelli, I., Demengel, F., Leoni, F.: Ergodic pairs for singular or degenerate fully nonlinear operators. ESAIM Control Optim. Calc. Var. (2019). https://doi.org/10.1051/cocv/2018070

    Article  MathSciNet  MATH  Google Scholar 

  5. Crandall, M., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  6. DiBenedetto, E.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7, 827–850 (1983)

    Article  MathSciNet  Google Scholar 

  7. Garcia-Azoero, J., Manfredi, J.J., Peral, I., Rossi, J.D.: The limit as \(p\rightarrow \infty \) for the p-Laplacian with mixed boundary conditions and the mass transport problem through a given window. Rend. Lincei Mat. Appl. 20, 111–126 (2009)

    MATH  Google Scholar 

  8. García-Melián, J., Rossi, J., Sabina de Lis, J.: Large solutions to the p-Laplacian for large p. Calc. Var. Partial Differ. Equ. 31, 187–204 (2008)

    Article  MathSciNet  Google Scholar 

  9. Juutinen, P., Lindqvist, P.: On the higher eigenvalues for the \(\infty \)-eigenvalue problem. Calc. Var. 23, 169–192 (2005)

    Article  MathSciNet  Google Scholar 

  10. Juutinen, P., Lindqvist, P., Manfredi, J.: On the equivalence of viscosity solutions and weak solutions for a quasilinear equation. SIAM J. Math. Anal. 33, 699–717 (2001)

    Article  MathSciNet  Google Scholar 

  11. Juutinen, P., Rossi, J.: Large solutions for the infinity Laplacian. Adv. Calc. Var. 1, 271–289 (2008)

    Article  MathSciNet  Google Scholar 

  12. Keller, J.B.: On solutions of \(\Delta u=f(u)\). Commun. Pure Appl. Math. 10, 503–510 (1957)

    Article  Google Scholar 

  13. Lasry, J.M., Lions, P.L.: Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem. Math. Ann. 283, 583–630 (1989)

    Article  MathSciNet  Google Scholar 

  14. Leonori, T.: Large solutions for a class of nonlinear elliptic equations with gradient terms. Adv. Nonlinear Stud. 7, 237–269 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Leonori, T., Petitta, F.: Local estimates for parabolic equations with nonlinear gradient terms. Calc. Var. 42, 153–187 (2011)

    Article  MathSciNet  Google Scholar 

  16. Leonori, T., Porretta, A.: Large solutions and gradient bounds for quasilinear elliptic equations. Commun. Partial Differ. Equ. 41, 952–998 (2016)

    Article  MathSciNet  Google Scholar 

  17. Leonori, T., Porretta, A., Riey, G.: Comparison principles for \(p\)-Laplace equations with lower order terms. Ann. Mat. Pura Appl. 196, 877–903 (2017)

    Article  MathSciNet  Google Scholar 

  18. Li, Y., Nirenberg, L.: The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations. Commun. Pure Appl. Math. 58, 85–146 (2005)

    Article  MathSciNet  Google Scholar 

  19. Medina, M., Ochoa, P.: On viscosity and weak solutions for non-homogeneous p-Laplace equations. Adv. Nonlinear Anal. 8, 468–481 (2019)

    Article  MathSciNet  Google Scholar 

  20. Osserman, R.: On the inequality \(\Delta u\ge f(u)\). Pac. J. Math. 7, 1641–1647 (1957)

    Article  Google Scholar 

Download references

Acknowledgements

Stefano Buccheri has been partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PNPD/CAPES-UnB-Brazil), Grants 88887.363582/2019-00, and by the Austrian Science Fund (FWF) Project F65.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Leonori.

Additional information

Communicated by N. Trudinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buccheri, S., Leonori, T. Large solutions to quasilinear problems involving the p-Laplacian as p diverges. Calc. Var. 60, 30 (2021). https://doi.org/10.1007/s00526-020-01883-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01883-6

Mathematics Subject Classification

Navigation