Skip to main content
Log in

More insights into the Trudinger–Moser inequality with monomial weight

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we present a detailed study of critical embeddings of weighted Sobolev spaces into weighted Orlicz spaces of exponential type for weights of monomial type. More precisely, we give an alternative proof of a recent result by N. Lam [NoDEA 24(4), 2017] showing the optimality of the constant in the Trudinger–Moser inequality. We prove a Poincaré inequality for this class of weights. We show that the critical embedding is optimal within the class of Orlicz target spaces. Moreover, we prove that it is not compact, and derive a corresponding version of P.-L. Lions’ principle of concentrated compactness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam), 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Albiac, F., Kalton, N.J.: Topics in Banach space theory, volume 233 Graduate Texts in Mathematics. Springer, Cham (2016). With a foreword by Gilles Godefroy

    Book  Google Scholar 

  3. Bennett, C., Sharpley, R.: Interpolation of operators, Pure and Applied Mathematics, vol. 129. Academic Press Inc., Boston, MA (1988)

    MATH  Google Scholar 

  4. Cabré, X., Ros-Oton, X.: Sobolev and isoperimetric inequalities with monomial weights. J. Differ. Equ. 255(11), 4312–4336 (2013)

    Article  MathSciNet  Google Scholar 

  5. Carleson, L., Chang, S.-Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110(2), 113–127 (1986)

    MathSciNet  MATH  Google Scholar 

  6. Edmunds, D.E., Evans, W.D.: Spectral theory and differential operators. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2018. Second edition of [MR0929030]

  7. Edmunds, D.E., Gurka, P., Opic, B.: Sharpness of embeddings in logarithmic Bessel-potential spaces. Proc. Royal Soc. Edinburgh Sect. A 126(5), 995–1009 (1996)

    Article  MathSciNet  Google Scholar 

  8. Edmunds, D.E., Kerman, R., Pick, L.: Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms. J. Funct. Anal. 170(2), 307–355 (2000)

    Article  MathSciNet  Google Scholar 

  9. Flucher, M.: Extremal functions for the Trudinger–Moser inequality in \(2\) dimensions. Comment. Math. Helv. 67(3), 471–497 (1992)

    Article  MathSciNet  Google Scholar 

  10. Folland, G.B.: Real analysis. Pure and Applied Mathematics (New York). John Wiley & Sons, Inc., New York, second edition (1999). Modern techniques and their applications, A Wiley-Interscience Publication

  11. Hempel, J.A., Morris, G.R., Trudinger, N.S.: On the sharpness of a limiting case of the Sobolev imbedding theorem. Bull. Aust. Math. Soc. 3, 369–373 (1970)

    Article  MathSciNet  Google Scholar 

  12. Lam, N.: Sharp Trudinger–Moser inequalities with monomial weights. NoDEA Nonlinear Differ. Equ. Appl. 24(4), Art. 39, 21 (2017)

    Article  MathSciNet  Google Scholar 

  13. Lin, K.-C.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348(7), 2663–2671 (1996)

    Article  MathSciNet  Google Scholar 

  14. Lin, K.-C.: Moser’s inequality and \(n\)-Laplacian. In Geometry from the Pacific Rim (Singapore, 1994), pp. 237–245. de Gruyter, Berlin (1997)

  15. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana 1(1), 145–201 (1985)

    Article  MathSciNet  Google Scholar 

  16. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/71)

  17. Muckenhoupt, B.: Hardy’s inequality with weights. Studia Math. 44, 31–38 (1972)

    Article  MathSciNet  Google Scholar 

  18. O’Neil, R.: Convolution operators and \(L(p,\, q)\) spaces. Duke Math. J. 30, 129–142 (1963)

    Article  MathSciNet  Google Scholar 

  19. Pick, L.: Optimal Sobolev embeddings. In: Nonlinear analysis, function spaces and applications, Vol. 6 (Prague, 1998), pp. 156–199. Acad. Sci. Czech Repub., Prague (1999)

  20. Pick, L., Kufner, A., John, O., Fučík, S.: Function spaces, volume 14 of De Gruyter Series in Nonlinear Analysis and Applications, vol. 1, extended edn. Walter de Gruyter & Co., Berlin (2013)

    Google Scholar 

  21. Pokhozhaev, S.: Eigenfunctions of the equation \(\Delta u+\lambda f(u) = 0\). Soviet Math. Doklady 6, 1408–1411 (1965)

    MATH  Google Scholar 

  22. Ruf, B.: On a result by Carleson-Chang concerning the Trudinger–Moser inequality. In: Proceedings of the Third World Congress of Nonlinear Analysts, Part 9 (Catania, 2000), vol. 47, pp. 6041–6051 (2001)

  23. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J. (1970)

  24. Talenti, G.: A weighted version of a rearrangement inequality. Ann. Univ. Ferrara Sez. VII (N.S.) 43(121–133), 1997 (1998)

    MathSciNet  Google Scholar 

  25. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  26. Yudovich, V.: Some estimates connected with integral operators and with solutions of elliptic equations. Soviet Math. Doklady 2, 746–749 (1961)

    MATH  Google Scholar 

  27. Zaanen, A.C.: Linear analysis. Measure and integral, Banach and Hilbert space, linear integral equations. Interscience Publishers Inc., New York; North-Holland Publishing Co., Amsterdam; P. Noordhoff N.V., Groningen (1953)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Gurka.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the first author was supported by grant No. P201-18-00580S of the Czech Science Foundation, and the second author’s research was supported by the Discovery Project grant DP200101065 of the Australian Research Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurka, P., Hauer, D. More insights into the Trudinger–Moser inequality with monomial weight. Calc. Var. 60, 16 (2021). https://doi.org/10.1007/s00526-020-01890-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01890-7

Mathematics Subject Classification

Navigation