Skip to main content
Log in

Curvature-Driven Wrinkling of Thin Elastic Shells

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

How much energy does it take to stamp a thin elastic shell flat? Motivated by recent experiments on the wrinkling patterns of floating shells, we develop a rigorous method via \(\Gamma \)-convergence for answering this question to leading order in the shell’s thickness and other small parameters. The observed patterns involve “ordered” regions of well-defined wrinkles alongside “disordered” regions whose local features are less robust; as little to no tension is applied, the preference for order is not a priori clear. Rescaling by the energy of a typical pattern, we derive a limiting variational problem for the effective displacement of the shell. It asks, in a linearized way, to cover up a maximum area with a length-shortening map to the plane. Convex analysis yields a boundary value problem characterizing the accompanying patterns via their defect measures. Partial uniqueness and regularity theorems follow from the method of characteristics on the ordered part of the shell. In this way, we can deduce from the principle of minimum energy the leading order features of stamped elastic shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. We picked up the term “weakly curved” from [37]. It indicates a family of shells also referred to as “shallow”, the deformations of which can be modeled using the Donnel–Mushtari–Vlasov theory [58, 81] or Marguerre’s theory of shallow shells [68]. Our stretching and bending terms become the ones from [68] under the substitution \(w \rightarrow w+p\), and the ones from [58, 81] under the further substitution \(u\rightarrow u-w\nabla p\).

References

  1. Aharoni, H., Todorova, D.V., Albarrán, O., Goehring, L., Kamien, R.D., Katifori, E.: The smectic order of wrinkles. Nat. Commun. 8, 15809, 2017

    Article  ADS  Google Scholar 

  2. Albarrán, O., Todorova, D.V., Katifori, E., Goehring, L.: Curvature controlled pattern formation in floating shells. ArXiv e-print arXiv:1806.03718

  3. Armitage, D.H., Kuran, U.: The convexity of a domain and the superharmonicity of the signed distance function. Proc. Am. Math. Soc. 93(4), 598–600, 1985

    Article  MathSciNet  MATH  Google Scholar 

  4. Arroyo-Rabasa, A.: Relaxation and optimization for linear-growth convex integral functionals under PDE constraints. J. Funct. Anal. 273(7), 2388–2427, 2017

    Article  MathSciNet  MATH  Google Scholar 

  5. Audoly, B., Boudaoud, A.: Buckling of a stiff film bound to a compliant substrate–part ii: A global scenario for the formation of herringbone pattern. J. Mech. Phys. Solids. 56(7), 2422–2443, 2008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Audoly, B., Boudaoud, A.: Buckling of a stiff film bound to a compliant substrate–part iii: Herringbone solutions at large buckling parameter. J. Mech. Phys. Solids. 56(7), 2444–2458, 2008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ball, J.M.: Mathematics and liquid crystals. Mol. Cryst. Liq. Cryst. 647(1), 1–27, 2017

    Article  MATH  Google Scholar 

  8. Bella, P.: The transition between planar and wrinkled regions in a uniaxially stretched thin elastic film. Arch. Ration. Mech. Anal. 216(2), 623–672, 2015

    Article  MathSciNet  MATH  Google Scholar 

  9. Bella, P., Kohn, R.V.: Wrinkles as the result of compressive stresses in an annular thin film. Commun. Pure Appl. Math. 67(5), 693–747, 2014

    Article  MathSciNet  MATH  Google Scholar 

  10. Bella, P., Kohn, R.V.: Coarsening of folds in hanging drapes. Commun. Pure Appl. Math. 70(5), 978–1021, 2017

    Article  MathSciNet  MATH  Google Scholar 

  11. Bella, P., Kohn, R.V.: Wrinkling of a thin circular sheet bounded to a spherical substrate. Philos. Trans. R. Soc. A 375(2093), 20160157, 2017. 20

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bhattacharya, K.: Microstructure of Martensite: Why it Forms and How It Gives Rise to the Shape-Memory Effect. Oxford Series on Materials Modelling. Oxford University Press, Oxford 2003

  13. Brau, F., Damman, P., Diamant, H., Witten, T.A.: Wrinkle to fold transition: influence of the substrate response. Soft Matter 9, 8177–8186, 2013

    Article  ADS  Google Scholar 

  14. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York 2011

    Book  MATH  Google Scholar 

  15. Cai, S., Breid, D., Crosby, A., Suo, Z., Hutchinson, J.: Periodic patterns and energy states of buckled films on compliant substrates. J. Mech. Phys. Solids 59(5), 1094–1114, 2011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Cerda, E., Mahadevan, L.: Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302, 2003

    Article  ADS  Google Scholar 

  17. Chen, X., Hutchinson, J.W.: A family of herringbone patterns in thin films. Scr. Mater. 50(6), 797–801, 2004

    Article  Google Scholar 

  18. Clarke, F.H.: On the inverse function theorem. Pac. J. Math. 64(1), 97–102, 1976

    Article  MathSciNet  MATH  Google Scholar 

  19. Conti, S., Maggi, F.: Confining thin elastic sheets and folding paper. Arch. Ration. Mech. Anal. 187(1), 1–48, 2008

    Article  MathSciNet  MATH  Google Scholar 

  20. Conti, S., Maggi, F., Müller, S.: Rigorous derivation of Föppl’s theory for clamped elastic membranes leads to relaxation. SIAM J. Math. Anal. 38(2), 657–680, 2006

    Article  MathSciNet  MATH  Google Scholar 

  21. Dacorogna, B.: Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, vol. 78, 2nd edn. Springer, New York 2008

    MATH  Google Scholar 

  22. Dal Maso, G.: An introduction to\(\Gamma \)-convergence. Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkhäuser Boston Inc, Boston, MA (1993)

  23. Davidovitch, B., Schroll, R.D., Vella, D., Adda-Bedia, M., Cerda, E.A.: Prototypical model for tensional wrinkling in thin sheets. Proc. Natl. Acad. Sci. 108(45), 18227–18232, 2011

    Article  ADS  MATH  Google Scholar 

  24. Davidovitch, B., Sun, Y., Grason, G.M.: Geometrically incompatible confinement of solids. Proc. Natl. Acad. Sci. 116(5), 1483–1488, 2019

    Article  MathSciNet  MATH  Google Scholar 

  25. De Giorgi, E., Franzoni, T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58(6), 842–850, 1975

    MathSciNet  MATH  Google Scholar 

  26. Demengel, F.: Compactness theorems for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity. Arch. Ration. Mech. Anal. 105(2), 123–161, 1989

    Article  MathSciNet  MATH  Google Scholar 

  27. DeSimone, A., Kohn, R.V., Müller, S., Otto, F.: Recent analytical developments in micromagnetics. In: Bertotti, G., Mayergoyz, I. (eds.) The Science of Hysterisis II: Physical Modeling, Micromagnetics, and Magnetization Dynamics, vol. 2, pp. 269–381. Elsevier, 2006

  28. Efrati, E., Sharon, E., Kupferman, R.: Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57(4), 762–775, 2009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Ekeland, I., Témam, R.: Convex analysis and variational problems, Classics in Applied Mathematics, vol. 28. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA 1999

    Book  MATH  Google Scholar 

  30. Fonseca, I., Gangbo, W.: Degree Theory in Analysis and Applications, vol. 2. Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York 1995

    MATH  Google Scholar 

  31. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics Springer, Berlin 2001

    Book  MATH  Google Scholar 

  32. Gottesman, O., Andrejevic, J., Rycroft, C.H., Rubinstein, S.M.: A state variable for crumpled thin sheets. Commun. Phys. 1(1), 70, 2018

    Article  Google Scholar 

  33. Graf, S., Mauldin, R.D.: A classification of disintegrations of measures. In: Measure and measurable dynamics (Rochester, NY, 1987), Contemp. Math., vol. 94, pp. 147–158. Amer. Math. Soc., Providence, RI (1989)

  34. Hohlfeld, E., Davidovitch, B.: Sheet on a deformable sphere: Wrinkle patterns suppress curvature-induced delamination. Phys. Rev. E 91, 012407, 2015

    Article  ADS  Google Scholar 

  35. Hornung, P.: Approximation of flat \(W^{2,2}\) isometric immersions by smooth ones. Arch. Ration. Mech. Anal. 199(3), 1015–1067, 2011

    Article  MathSciNet  MATH  Google Scholar 

  36. Hornung, P.: Fine level set structure of flat isometric immersions. Arch. Ration. Mech. Anal. 199(3), 943–1014, 2011

    Article  MathSciNet  MATH  Google Scholar 

  37. Howell, P., Kozyreff, G., Ockendon, J.: Applied solid Mechanics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge 2009

    MATH  Google Scholar 

  38. Huang, J., Davidovitch, B., Santangelo, C.D., Russell, T.P., Menon, N.: Smooth cascade of wrinkles at the edge of a floating elastic film. Phys. Rev. Lett. 105, 038302, 2010

    Article  ADS  Google Scholar 

  39. Huang, Z., Hong, W., Suo, Z.: Evolution of wrinkles in hard films on soft substrates. Phys. Rev. E 70, 030601, 2004

    Article  ADS  Google Scholar 

  40. Huang, Z., Hong, W., Suo, Z.: Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53(9), 2101–2118, 2005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Hure, J., Roman, B., Bico, J.: Stamping and wrinkling of elastic plates. Phys. Rev. Lett. 109, 054302, 2012

    Article  ADS  Google Scholar 

  42. Iwaniec, T.: On the concept of the weak Jacobian and Hessian. In: Papers on analysis, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 83, pp. 181–205. Univ. Jyväskylä, Jyväskylä 2001

  43. King, H., Schroll, R.D., Davidovitch, B., Menon, N.: Elastic sheet on a liquid drop reveals wrinkling and crumpling as distinct symmetry-breaking instabilities. Proc. Natl. Acad. Sci. 109(25), 9716–9720, 2012

    Article  ADS  Google Scholar 

  44. Kirchheim, B.: Geometry and rigidity of microstructures. Habilitation thesis, University of Leipzig, Leipzig (2001)

  45. Kohn, R., Temam, R.: Dual spaces of stresses and strains, with applications to Hencky plasticity. Appl. Math. Optim. 10(1), 1–35, 1983

    Article  MathSciNet  MATH  Google Scholar 

  46. Kohn, R.V.: Energy-driven pattern formation. In: International Congress of Mathematicians. vol. I, pp. 359–383. Eur. Math. Soc., Zürich, 2007

  47. Kohn, R.V., Nguyen, H.M.: Analysis of a compressed thin film bonded to a compliant substrate: The energy scaling law. J. Nonlinear Sci. 23(3), 343–362, 2013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Kuiper, N.H.: On \(C^1\)-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17, 545–556, 683–689 (1955)

  49. Lewicka, M., Pakzad, M.R.: Convex integration for the Monge–Ampère equation in two dimensions. Anal. PDE 10(3), 695–727, 2017

    Article  MathSciNet  MATH  Google Scholar 

  50. Li, Y., Nirenberg, L.: The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations. Commun. Pure Appl. Math. 58(1), 85–146, 2005

    Article  MathSciNet  MATH  Google Scholar 

  51. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana 1(1), 145–201, 1985

    Article  MathSciNet  MATH  Google Scholar 

  52. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoamericana 1(2), 45–121, 1985

    Article  MathSciNet  MATH  Google Scholar 

  53. Lobkovsky, A.E., Witten, T.A.: Properties of ridges in elastic membranes. Phys. Rev. E 55, 1577–1589, 1997

    Article  ADS  Google Scholar 

  54. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Dover Publications, New York 1944

    MATH  Google Scholar 

  55. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory, vol. 135. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge 2012

    Book  MATH  Google Scholar 

  56. Müller, S.: Mathematical problems in thin elastic sheets: Scaling limits, packing, crumpling and singularities. In: Vector-valued partial differential equations and applications, Lecture Notes in Math., vol. 2179, pp. 125–193. Springer, Cham (2017)

  57. Nash, J.: \(C^1\) isometric imbeddings. Ann. Math. 2(60), 383–396, 1954

    Article  MATH  Google Scholar 

  58. Niordson, F.I.: Shell Theory, North-Holland Series in Applied Mathematics and Mechanics, vol. 29. North-Holland Publishing Co., Amsterdam 1985

    Google Scholar 

  59. Pakzad, M.R.: On the Sobolev space of isometric immersions. J. Differ. Geom. 66(1), 47–69, 2004

    MathSciNet  MATH  Google Scholar 

  60. Paulsen, J.D., Démery, V., Santangelo, C.D., Russell, T.P., Davidovitch, B., Menon, N.: Optimal wrapping of liquid droplets with ultrathin sheets. Nat. Mater. 14, 1206, 2015

    Article  ADS  Google Scholar 

  61. Paulsen, J.D., Démery, V., Toga, K.B., Qiu, Z., Russell, T.P., Davidovitch, B., Menon, N.: Geometry-driven folding of a floating annular sheet. Phys. Rev. Lett. 118, 048004, 2017

    Article  ADS  Google Scholar 

  62. Pipkin, A.C.: The relaxed energy density for isotropic elastic membranes. IMA J. Appl. Math. 36(1), 85–99, 1986

    Article  MathSciNet  MATH  Google Scholar 

  63. Pipkin, A.C.: Relaxed energy densities for small deformations of membranes. IMA J. Appl. Math. 50(3), 225–237, 1993

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Pipkin, A.C.: Relaxed energy densities for large deformations of membranes. IMA J. Appl. Math. 52(3), 297–308, 1994

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Pocivavsek, L., Dellsy, R., Kern, A., Johnson, S., Lin, B., Lee, K.Y.C., Cerda, E.: Stress and fold localization in thin elastic membranes. Science 320(5878), 912–916, 2008

    Article  ADS  Google Scholar 

  66. Rauch, J., Taylor, B.A.: The Dirichlet problem for the multidimensional Monge–Ampère equation. Rocky Mt. J. Math. 7(2), 345–364, 1977

    Article  MATH  Google Scholar 

  67. Reissner, E.: On tension field theory. In Proc. Fifth Int. Cong. on Appl. Mech. 88–92 (1938)

  68. Sanders Jr., J.L.: Nonlinear theories for thin shells. Q. Appl. Math. 21, 21–36, 1963

    Article  MathSciNet  Google Scholar 

  69. Schymura, D.: An upper bound on the volume of the symmetric difference of a body and a congruent copy. Adv. Geom. 14(2), 287–298, 2014

    Article  MathSciNet  MATH  Google Scholar 

  70. Steigmann, D.J.: Tension-field theory. Proc. Roy. Soc. Lond. Ser. A 429(1876), 141–173, 1990

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Stoker, J.J.: Differential Geometry. Wiley Classics Library. Wiley, New York 1989

    MATH  Google Scholar 

  72. Stoop, N., Lagrange, R., Terwagne, D., Reis, P.M., Dunkel, J.: Curvature-induced symmetry breaking determines elastic surface patterns. Nat. Mater. 14(3), 337, 2015

    Article  ADS  Google Scholar 

  73. Struik, D.J.: Lectures on Classical Differential Geometry, 2nd edn. Dover Publications Inc, New York 1988

    MATH  Google Scholar 

  74. Taffetani, M., Vella, D.: Regimes of wrinkling in pressurized elastic shells. Philos. Trans. R. Soc. A 375(2093), 20160330, 2017. 20

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Temam, R.: Mathematical problems in plasticity. Courier Dover Publications, 2018. Dover republication of the edition originally published by Gauthier-Villars, Paris (1983)

  76. Temam, R., Strang, G.: Functions of bounded deformation. Arch. Rational Mech. Anal. 75(1), 7–21 (1980/81)

  77. Terwagne, D., Brojan, M., Reis, P.M.: Smart morphable surfaces for aerodynamic drag control. Adv. Mater. 26(38), 6608–6611, 2014

    Article  Google Scholar 

  78. Tobasco, I., Timounay, Y., Todorova, D., Leggat, G.C., Paulsen J.D., Katifori E.: Exact solutions for the wrinkle patterns of confined elastic shells. ArXiv e-print arXiv:2004.02839

  79. Trudinger, N.S., Urbas, J.I.E.: On second derivative estimates for equations of Monge-Ampère type. Bull. Aust. Math. Soc. 30(3), 321–334, 1984

    Article  MATH  Google Scholar 

  80. Venkataramani, S.C.: Lower bounds for the energy in a crumpled elastic sheet–a minimal ridge. Nonlinearity 17(1), 301, 2004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Ventsel, E., Krauthammer, T.: Thin Plates and Shells: Theory, Analysis, and Applications. CRC Press, Boca Raton 2001

    Book  Google Scholar 

  82. Wagner, H.: Ebene blechwandträger mit sehr dünnem stegblech. Z. Flugtech. Motorluftshiffahrt 20(8–12), 200, 1929. Translation appeared as Flat sheet metal girders with very thin metal webs. NACA TM 604, 605 and 606, 1931

  83. Witten, T.A.: Stress focusing in elastic sheets. Rev. Mod. Phys. 79, 643–675, 2007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Yao, Z., Bowick, M., Ma, X., Sknepnek, R.: Planar sheets meet negative-curvature liquid interfaces. EPL 101(4), 44007, 2013

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Eleni Katifori, Joseph D. Paulsen, Yousra Timounay, and Desislava V. Todorova for sharing their experimental and numerical results on thin and ultrathin floating shells in advance of their publication. We thank Benny Davidovitch, Charles R. Doering, and Robert V. Kohn for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Tobasco.

Ethics declarations

Conflicts of interest

The author declares that they have no conflict of interest.

Additional information

Communicated by M. Ortiz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by National Science Foundation Awards DMS-1812831, DMS-1813003, and DMS-2025000, and a University of Michigan Van Loo Postdoctoral Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobasco, I. Curvature-Driven Wrinkling of Thin Elastic Shells. Arch Rational Mech Anal 239, 1211–1325 (2021). https://doi.org/10.1007/s00205-020-01566-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01566-8

Navigation