Skip to main content

Advertisement

Log in

Elastic and Stretchable Functional Fibers: A Review of Materials, Fabrication Methods, and Applications

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Elastic and stretchable functional fibers have drawn attentions from wide research field because of their unique advantages including high dynamic bending elasticity, stretchability and high mechanic strength. Lots of efforts have been made to find promising soft materials and improve the processing methods to fabricate the elastomer fibers with controllable fiber geometries and designable functionalities. Significant progress has been made and various interdisciplinary applications have been demonstrated based on their unique mechanical performance. A series of remarkable applications, involving biomedicine, optics, electronics, human machine interfaces etc., have been successfully achieved. Here, we summarize main processing methods to fabricate soft and stretchable functional fibers using different types of elastic materials, which are either widely used or specifically developed. We also introduce some representative applications of multifunctional elastic fibers to reveal this promising research area. All these reported applications indicate that the fast innovated interdisciplinary area is of great potential and inspire more remarkable ideas in fiber sensing, soft electronics, functional fiber integration and other related research fields.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xiong J., Lee P. S. Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile. Sci. Technol. Adv. Mater. 2019, 20, 837.

    Google Scholar 

  2. Dong K., Peng X., Wang Z. L. Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 1902549.

    CAS  Google Scholar 

  3. Yan W., Richard I., Kurtuldu G., James N. D., Schiavone G., Squair J. W., Nguyen‐Dang T., Das Gupta T., Qu Y., Cao J. D , Ignatans R., Lacour S. P., Tileli V., Courtine G., Löffler J. F., Sorin F. Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat. Nanotech. 2020, 15, 875.

    CAS  Google Scholar 

  4. Zhang J., Zhang T., Zhang H., Wang Z., Li C., Wang Z., Li K., Huang X., Chen M., Chen Z. Single‐crystal SnSe thermoelectric fibers via laser‐induced directional crystallization: from 1D fibers to multidimensional fabrics. Adv. Mater. 2020, 32, 2002702.

    CAS  Google Scholar 

  5. Yang Z., Ren J., Zhang Z., Chen X., Guan G., Qiu L., Zhang Y., Peng H. Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 2015, 115, 5159.

    CAS  Google Scholar 

  6. Wang Z., Wu T., Wang Z., Zhang T., Chen M., Zhang J., Liu L., Qi M., Zhang Q., Yang J. Designer patterned functional fibers via direct imprinting in thermal drawing. Nat. Commun. 2020, 11, 1.

    Google Scholar 

  7. Yan W., Page A., Nguyen-Dang T., Qu Y., Sordo F., Wei L., Sorin F. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater. 2019, 31, 1802348.

    Google Scholar 

  8. Loke G., Yan W., Khudiyev T., Noel G., Fink Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv Mater. 2020, 32, 1904911.

    CAS  Google Scholar 

  9. Yan W., Qu Y., Gupta T. D., Darga A., Nguyên D. T., Page A. G., Rossi M., Ceriotti M., Sorin F. Semiconducting nanowire-based optoelectronic fibers. Adv. Mater. 2017, 29, 1700681.

    Google Scholar 

  10. Frank J. A., Antonini M.-J., Anikeeva P. Next-generation interfaces for studying neural function. Nat. Biotechnol. 2019, 37, 1013.

    CAS  Google Scholar 

  11. Qi M., Zhang N. M. Y., Li K., Tjin S. C., Wei L. Hybrid plasmonic fiber-optic Sensors. Sensors. 2020, 20, 3266.

    CAS  Google Scholar 

  12. Yan W., Dong C., Xiang Y., Jiang S., Leber A., Loke G., Xu W., Hou C., Zhou S., Chen M. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today. 2020, 35, 168.

    CAS  Google Scholar 

  13. Dong C., Page A. G., Yan W., Nguyen-Dang T., Sorin F. Microstructured multimaterial fibers for microfluidic sensing. Adv. Mater. Technol. 2019, 4, 1900417.

    CAS  Google Scholar 

  14. Sun H., You X., Jiang Y., Guan G., Fang X., Deng J., Chen P., Luo Y., Peng H. Self-healable electrically conducting wires for wearable microelectronics. Angew. Chem. Int. Ed. 2014, 53, 9526.

    CAS  Google Scholar 

  15. Yu D., Goh K., Wang H., Wei L., Jiang W., Zhang Q., Dai L., Chen Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotech. 2014, 9, 555.

    CAS  Google Scholar 

  16. Sun H., Zhang Y., Zhang J., Sun X., Peng H. Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2017, 2, 17023.

    CAS  Google Scholar 

  17. Liao M., Ye L., Zhang Y., Chen T., Peng H. The recent advance in fiber-shaped energy storage devices. Adv. Electron. Mater. 2019, 5, 1800456.

    Google Scholar 

  18. Zhou Y., Wang C.-H., Lu W., Dai L. Recent advances in fiber-shaped supercapacitors and lithium-ion batteries. Adv Mater. 2020, 32, 1902779.

    CAS  Google Scholar 

  19. Yang S., Macharia D. K., Ahmed S., Zhu B., Zhong Q., Wang H., Chen Z. Flexible and reusable non-woven fabric photodetector based on polypyrrole/crystal violate lactone for NIR light detection and writing. Adv. Fiber Mater. 2020, 2, 150.

    Google Scholar 

  20. Wei L. Advanced Fiber Sensing Technologies. Springer; 2020.

  21. Wang L., Fu X., He J., Shi X., Chen T., Chen P., Wang B., Peng H. Application challenges in fiber and textile electronics. Adv. Mater. 2020, 32, 1901971.

    CAS  Google Scholar 

  22. Weng W., Yang J., Zhang Y., Li Y., Yang S., Zhu L., Zhu M. A route toward smart system integration: from fiber design to device construction. Adv. Mater. 2020, 32, 1902301.

    CAS  Google Scholar 

  23. Chen T., Hao R., Peng H., Dai L. High-performance, stretchable, wire-shaped supercapacitors. Angew. Chem. In.t Ed. 2015, 54, 618.

  24. Sun H., Xie S., Li Y., Jiang Y., Sun X., Wang B., Peng H. Large-area supercapacitor textiles with novel hierarchical conducting structures. Adv. Mater. 2016, 28, 8431.

    CAS  Google Scholar 

  25. Shi Q., Sun J., Hou C., Li Y., Zhang Q., Wang H. Advanced functional fiber and smart textile. Adv. Fiber Mater. 2019, 1, 3.

    Google Scholar 

  26. Gao P., Li J., Shi Q. A hollow polyethylene fiber-based artificial muscle. Adv. Fiber Maters. 2019, 1, 214.

    Google Scholar 

  27. Li J., Sun J., Wu D., Huang W., Zhu M., Reichmanis E., Yang S. Functionalization-directed stabilization of hydrogen-bonded polymer complex fibers: elasticity and conductivity. Adv. Fiber Mater. 2019, 1, 71.

    Google Scholar 

  28. Chen J., Pakdel E., Xie W., Sun L., Xu M., Liu Q., Wang D. High-performance natural melanin/poly(vinyl alcohol-co-ethylene) nanofibers/PA6 Fiber for twisted and coiled fiber-based actuator. Adv. Fiber Mater. 2020, 2, 64.

    Google Scholar 

  29. Leber A., Cholst B., Sandt J., Vogel N., Kolle M. Stretchable thermoplastic elastomer optical fibers for sensing of extreme deformations. Adv. Funct. Mater. 2019, 29, 1802629.

    Google Scholar 

  30. Cooper C. B., Arutselvan K., Liu Y., Armstrong D., Lin Y., Khan M. R., Genzer J., Dickey M. D. Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers. Adv. Funct Mater. 2017, 27, 1605630.

    Google Scholar 

  31. Tong Y., Feng Z., Kim J., Robertson J. L., Jia X., Johnson B. N. 3D printed stretchable triboelectric nanogenerator fibers and devices. Nano Energy. 2020, 104973.

  32. Xu P. A., Mishra A. K., Bai H., Aubin C. A., Zullo L., Shepherd R. F. Optical lace for synthetic afferent neural networks. Sci. Robot. 2019, 4, 34.

    Google Scholar 

  33. Zhang Q., Li L., Li H., Tang L., He B., Li C., Pan Z., Zhou Z., Li Q., Sun J. Wei L., Fan X., Zhang T., Yao Y. Ultra-endurance coaxial-fiber stretchable sensing systems fully powered by sunlight. Nano Energy. 2019, 60, 267.

    Google Scholar 

  34. Peng H., Shi X., Zuo Y., Zhai P., Shen J., Yang Y., Gao Z., Liao M., Wang J., Xu X. Large-area display textiles integrated with functional systems. 2020. DOI: https://doi.org/10.21203/rs.3.rs-56463/v1.

    Article  Google Scholar 

  35. Qu Y., Nguyen‐Dang T., Page A. G., Yan W., Das Gupta T., Rotaru G. M., Rossi R. M., Favrod V. D., Bartolomei N., Sorin F. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv. Mater. 2018, 30, 1707251.

    Google Scholar 

  36. Yu L., Parker S., Xuan H., Zhang Y., Jiang S., Tousi M., Manteghi M., Wang A., Jia X. Flexible multi‐material fibers for distributed pressure and temperature sensing. Adv. Funct. Mater. 2020, 30, 1908915.

    CAS  Google Scholar 

  37. Leber A., Dong C., Chandran R., Gupta T. D., Bartolomei N., Sorin F. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat. Electron. 2020, 1, 11.

    Google Scholar 

  38. Zhao H., O’Brien K., Li S., Shepherd R. F. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 2016, 1, eaai7529.

  39. Chang-Yen D. A., Eich R. K., Gale B. K. A monolithic PDMS waveguide system fabricated using soft-lithography techniques. J. Lightwave Technol. 2005, 23, 2088.

    CAS  Google Scholar 

  40. Kee J. S., Poenar D. P., Neuzil P., Yobas L. Design and fabrication of poly (dimethylsiloxane) single-mode rib waveguide. Opt. Express. 2009, 17, 11739.

    CAS  Google Scholar 

  41. Cai Z., Qiu W., Shao G., Wang W. A new fabrication method for all-PDMS waveguides. Sens. Actuators A: Physical. 2013, 204, 44.

    CAS  Google Scholar 

  42. Missinne J., Kalathimekkad S., Van Hoe B., Bosman E., Vanfleteren J., Van Steenberge G. Stretchable optical waveguides. Opt. Express. 2014, 22, 4168.

    CAS  Google Scholar 

  43. Guo J., Niu M., Yang C. Highly flexible and stretchable optical strain sensing for human motion detection. Optica. 2017, 4, 1285.

    Google Scholar 

  44. Guo J., Zhou B., Yang C., Dai Q., Kong L. Stretchable and temperature‐sensitive polymer optical fibers for wearable health monitoring. Adv. Funct. Mater. 2019, 29, 1902898.

    Google Scholar 

  45. Elmogi A., Bosman E., Missinne J., Van Steenberge G. Comparison of epoxy-and siloxane-based single-mode optical waveguides defined by direct-write lithography. Opt. Mater. 2016, 52, 26.

    CAS  Google Scholar 

  46. Choi M., Humar M., Kim S., Yun S. H. Step‐index optical fiber made of biocompatible hydrogels. Adv. Mater. 2015, 27, 4081.

    CAS  Google Scholar 

  47. Guo J., Liu X., Jiang N., Yetisen A. K., Yuk H., Yang C., Khademhosseini A., Zhao X., Yun S. H. Highly stretchable, strain sensing hydrogel optical fibers. Adv. Mater. 2016, 28, 10244.

    CAS  Google Scholar 

  48. Yetisen A. K., Jiang N., Fallahi A., Montelongo Y., Ruiz‐Esparza G. U., Tamayol A., Zhang Y. S., Mahmood I., Yang S. A., Kim K. S. Glucose‐sensitive hydrogel optical fibers functionalized with phenylboronic acid. Adv. Mater. 2017, 29, 1606380.

    Google Scholar 

  49. Zhu S., So J. H., Mays R., Desai S., Barnes W. R., Pourdeyhimi B., Dickey M. D. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv. Funct. Mater. 2013, 23, 2308.

    CAS  Google Scholar 

  50. Lu C., Park S., Richner T. J., Derry A., Brown I., Hou C., Rao S., Kang J., Moritz C. T., Fink Y., Anikeeva P. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci. Adv. 2017, 3, e1600955.

    Google Scholar 

  51. Manocchi A. K., Domachuk P., Omenetto F. G., Yi H. Facile fabrication of gelatin‐based biopolymeric optical waveguides. Biotechnol. Bioeng. 2009, 103, 725.

    CAS  Google Scholar 

  52. Sordo F., Janecek E. R., Qu Y., Michaud V., Stellacci F., Engmann J., Wooster T. J., Sorin F. Microstructured fibers for the production of food. Adv. Mater. 2019, 31, 1807282.

    Google Scholar 

  53. Qin H., Owyeung R. E., Sonkusale S. R., Panzer M. J. Highly stretchable and nonvolatile gelatin-supported deep eutectic solvent gel electrolyte-based ionic skins for strain and pressure sensing. J. Mater. Chem. C. 2019, 7, 601.

    CAS  Google Scholar 

  54. Shan D., Zhang C., Kalaba S., Mehta N., Kim G. B., Liu Z., Yang J. Flexible biodegradable citrate-based polymeric step-index optical fiber. Biomaterials. 2017, 143, 142.

    CAS  Google Scholar 

  55. Nizamoglu S., Gather M. C., Humar M., Choi M., Kim S., Kim K. S., Hahn S. K., Scarcelli G., Randolph M., Redmond R. W. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat. Commun. 2016, 7, 1.

    Google Scholar 

  56. Fu R., Luo W., Nazempour R., Tan D., Ding H., Zhang K., Yin L., Guan J., Sheng X. Implantable and biodegradable poly (l‐lactic acid) fibers for optical neural interfaces. Adv. Opt. Mater. 2018, 6, 1700941.

    Google Scholar 

  57. Parker S. T., Domachuk P., Amsden J., Bressner J., Lewis J. A., Kaplan D. L., Omenetto F. G. Biocompatible silk printed optical waveguides. Adv. Mater. 2009, 21, 2411.

    CAS  Google Scholar 

  58. Huby N., Vié V., Renault A., Beaufils S., Lefevre T., Paquet-Mercier F., Pézolet M., Bêche B. Native spider silk as a biological optical fiber. Appl. Phys. Lett. 2013, 102, 123702.

    Google Scholar 

  59. Applegate M. B., Perotto G., Kaplan D.L., Omenetto F. G. Biocompatible silk step-index optical waveguides. Biomedical. Opt. express. 2015, 6, 4221.

    Google Scholar 

  60. Chen G., Matsuhisa N., Liu Z., Qi D., Cai P., Jiang Y., Wan C., Cui Y., Leow W. R., Liu Z. Plasticizing silk protein for on‐skin stretchable electrodes. Adv. Mater. 2018, 30, 1800129.

    Google Scholar 

  61. Loke G., Yan W., Khudiyev T., Noel G., Fink Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 2019, 1904911.

  62. Loke G., Yuan R., Rein M., Khudiyev T., Jain Y., Joannopoulos J., Fink Y. Structured multimaterial filaments for 3D printing of optoelectronics. Nat. Commun. 2019, 10, 4010.

    Google Scholar 

  63. Yang Z., Deng J., Sun X., Li H., Peng H. Stretchable, wearable dye‐sensitized solar cells. Adv. Mater. 2014, 26, 2643.

    CAS  Google Scholar 

  64. Yang Z., Deng J., Chen X., Ren J., Peng H. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed. 2013, 52, 13453.

    CAS  Google Scholar 

  65. Sun H., Fu X., Xie S., Jiang Y., Peng H. Electrochemical capacitors with high output voltages that mimic electric eels. Adv. Mater. 2016, 28, 2070.

    CAS  Google Scholar 

  66. Guo J., Zhou B., Zong R., Pan L., Li X., Yu X., Yang C., Kong L., Dai Q. Stretchable and highly sensitive optical strain sensors for human-activity monitoring and healthcare. ACS Appl. Mater. Interfaces. 2019, 11, 33589.

    CAS  Google Scholar 

  67. Sim H. J, Lee D. Y, Kim H., Choi Y.-B., Kim H.-H., Baughman R. H., Kim S. J. Stretchable fiber biofuel cell by rewrapping multiwalled carbon nanotube sheets. Nano Lett. 2018, 18, 5272.

    CAS  Google Scholar 

  68. Zhang B., Lei J., Qi D., Liu Z., Wang Y., Xiao G., Wu J., Zhang W., Huo F., Chen X. Stretchable conductive fibers based on a cracking control strategy for wearable electronics. Adv. Funct. Mater. 2018, 28, 1801683.

    Google Scholar 

  69. Wang L., Xie S., Wang Z., Liu F., Yang Y., Tang C., Wu X., Liu P., Li Y., Saiyin H., Zheng S., Sun X., Xu F., Yu H., Peng H. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Bio. Eng. 2020, 4, 159.

    CAS  Google Scholar 

  70. Yang X., Li L., Yang D., Nie J., Ma G. Electrospun core-Shell fibrous 2D scaffold with biocompatible poly(glycerol sebacate) and poly-l-lactic acid for wound healing. Adv. Fiber Mater. 2020, 2, 105.

    Google Scholar 

  71. Heo Y. J., Shibata H., Okitsu T., Kawanishi T., Takeuchi S. Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc. Natl. Acad. Sci. 2011, 108, 13399.

    CAS  Google Scholar 

  72. Xu B., Ma S., Xiang Y., Zhang J., Zhu M., Wei L., Tao G., Deng D. In-Fiber structured particles and filament arrays from the perspective of fluid instabilities. Adv. Fiber Mater. 2020, 2, 1.

    Google Scholar 

  73. Kanik M., Orguc S., Varnavides G., Kim J., Benavides T., Gonzalez D., Akintilo T., Tasan C. C., Chandrakasan A. P., Fink Y., Anikeeva P. Strain-programmable fiber-based artificial muscle. Science. 2019, 365, 145.

    CAS  Google Scholar 

  74. Feng Z., Yang S., Jia S., Zhang Y., Jiang S., Yu L., Li R., Song G., Wang A., Martin T., Zuo L., Jia X. Scalable, washable and lightweight triboelectric-energy-generating fibers by the thermal drawing process for industrial loom weaving. Nano Energy. 2020, 74, 104805.

    CAS  Google Scholar 

  75. Dong C., Leber A., Das Gupta T., Chandran R., Volpi M., Qu Y., Nguyen-Dang T., Bartolomei N., Yan W., Sorin F. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat. Commun. 2020, 11, 3537.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Singapore Ministry of Education Academic Research Fund Tier 2 (MOE2019-T2-2-127 and T2EP50120-0005), A*STAR under AME IRG (A2083c0062), the Singapore Ministry of Education Academic Research Fund Tier 1 (RG90/19 and RG73/19) and the Singapore National Research Foundation Competitive Research Program (NRF-CRP18-2017-02). This work was also supported by Nanyang Technological University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiandi Wang or Lei Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wang, Z., Li, K. et al. Elastic and Stretchable Functional Fibers: A Review of Materials, Fabrication Methods, and Applications. Adv. Fiber Mater. 3, 1–13 (2021). https://doi.org/10.1007/s42765-020-00057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-020-00057-5

Keywords

Navigation