Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 2, 2021

Schur complement spectral bounds for large hybrid FETI-DP clusters and huge three-dimensional scalar problems

  • Zdeněk Dostál EMAIL logo , Tomáš Brzobohatý and Oldřich Vlach

Abstract

Bounds on the spectrum of Schur complements of subdomain stiffness matrices with respect to the interior variables are key ingredients of the convergence analysis of FETI (finite element tearing and interconnecting) based domain decomposition methods. Here we give bounds on the regular condition number of Schur complements of ‘floating’ clusters arising from the discretization of 3D Laplacian on a cube decomposed into cube subdomains. The results show that the condition number of the cluster defined on a fixed domain decomposed into m × m × m cube subdomains connected by face and optionally edge averages increases proportionally to m. The estimates support scalability of unpreconditioned H-FETI-DP (hybrid FETI dual-primal) method. Though the research is most important for the solution of variational inequalities, the results of numerical experiments indicate that unpreconditioned H-FETI-DP with large clusters can be useful also for the solution of huge linear problems.

MSC 2010: 15A42; 65N55
  1. funding This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPS II) project ‘IT4Innovations excellence in science – LQ1602’ and by the IT4Innovations infrastructure which is supported from the Large Infrastructures for Research, Experimental Development and Innovations project ‘e-INFRA CZ–LM2018140’.

References

[1] S. C. Brenner, The condition number of the Schur complement in domain decomposition, Numer. Math. 83 (1999), 187–203.10.1007/s002110050446Search in Google Scholar

[2] T. Brzobohatý, M. Jarošová, T. Kozubek, M. Menšík, and A. Markopoulos, The hybrid total FETI method. In: Proc. of the 3rd Int. Conf. on Parallel, Distributed, Grid, and Cloud Computing for Engineering, Civil-Comp Press, Stirlingshire, 2013, paper 2.Search in Google Scholar

[3] Z. Dostál and D. Horák, Theoretically supported scalable FETI for numerical solution of variational inequalities, SIAM J. Numer. Anal. 45 (2007), No. 2, 500–513.10.1137/050639454Search in Google Scholar

[4] Z. Dostál, D. Horák, T. Brzobohatý, and P. Vodstrčil, Bounds on the spectra of Schur complements of large H-TFETI clusters for 2D Laplacian and applications, Numer. Lin. Agebra Appl. 28 (2021), No. 2, e2344.Search in Google Scholar

[5] Z. Dostál, D. Horák, and R. Kučera., Total FETI – an easier implementable variant of the FETI method for numerical solution of elliptic PDE, Commun. Numer. Methods Engrg. 22 (2006), 1155–1162.10.1002/cnm.881Search in Google Scholar

[6] Z. Dostál, T. Kozubek, M. Sadowská, and V. Vondrák, Scalable Algorithms for Contact Problems, AMM 36, Springer, New York, 2016.10.1007/978-1-4939-6834-3Search in Google Scholar

[7] Z. Dostál, T. Kozubek, and O. Vlach, Reorthogonalization based stiffness preconditioning in FETI algorithms with applications to variational inequalities, Numer. Lin. Algebra Appl. 22 (2015), No. 6, 987–998.10.1002/nla.1994Search in Google Scholar

[8] ESPRESO – highly parallel framework for engineering applications, http://numbox.it4i.cz.Search in Google Scholar

[9] C. Farhat, M. Lesoinne, P. Le Tallec, K. Pierson, and D. Rixen, A dual-primal unified FETI method I – a faster alternative to the two-level FETI method, Int. J. Numer. Methods Engrg. 50 (2001), No. 7, 1524–1544.10.1002/nme.76Search in Google Scholar

[10] C. Farhat, M. Lesoinne, and K. Pierson, A scalable dual-primal domain decomposition method, Numer. Lin. Agebra Appl. 7 (2000), No. 7-8, 687–714.10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-SSearch in Google Scholar

[11] C. Farhat, J. Mandel, and F.-X. Roux, Optimal convergence properties of the FETI domain decomposition method, Comput. Methods Appl. Mech. Engrg. 115 (1994), 365–385.10.1016/0045-7825(94)90068-XSearch in Google Scholar

[12] C. Farhat and F.-X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Numer. Methods Engrg. 32 (1991), 1205–1227.10.1002/nme.1620320604Search in Google Scholar

[13] C. Farhat and F.-X. Roux, An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems, SIAM J. Sci. Comput. 13 (1992), 379–396.10.1137/0913020Search in Google Scholar

[14] G. H. Golub and C. F. Van Loan, Matrix Computations, John Hopkins Univ. Press, 4th ed., 2013.Search in Google Scholar

[15] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1991.10.1017/CBO9780511840371Search in Google Scholar

[16] I. C. Ipsen and C. D. Mayer, The angle between complementary subspaces, Amer. Math. Monthly 102 (1995), No. 10, 904–911.10.1080/00029890.1995.12004683Search in Google Scholar

[17] M. A. Klawonn, M. Kühn, and O. Rheinbach, Coarse spaces for FETI-DP and BDDC methods for heterogeneous problems: connecting of deflation and generalized transformation-of-bases approach, Electron. Trans. Numer. Anal. 52 (2020), 43–76.10.1553/etna_vol52s43Search in Google Scholar

[18] A. Klawonn, M. Lanser, and O. Rheinbach, Toward extremely scalable nonlinear domain decomposition methods for elliptic partial differential equations, SIAM J. Sci. Comput. 37 (2015), No. 6, C667–C696.10.1137/140997907Search in Google Scholar

[19] A. Klawonn and O. Rheinbach, A parallel implementation of dual-primal FETI methods for three dimensional linear elasticity using a transformation of basis, SIAM J. Sci. Comput. 28 (2006), No. 5, 1886–1906.10.1137/050624364Search in Google Scholar

[20] A. Klawonn and O. Rheinbach, A hybrid approach to 3-level FETI, PAMM 8 (2008), 10841–10843.10.1002/pamm.200810841Search in Google Scholar

[21] A. Klawonn and O. Rheinbach, Highly scalable parallel domain decomposition methods with an application to biomechanics, Z. Angew. Math. Mech. 90 (2010), No. 1, 5–32.10.1002/zamm.200900329Search in Google Scholar

[22] A. Klawonn, O. B. Widlund, and M. Dryja, Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients, SIAM J. Numer. Anal. 40 (2002), 159–179.10.1137/S0036142901388081Search in Google Scholar

[23] A. Klawonn and O. Widlund, Dual-primal FETI method for linear elasticity, Commun. Pure Appl. Math. LIX (2006), 1523–1572.10.1002/cpa.20156Search in Google Scholar

[24] J. Lee, Domain decomposition methods for auxiliary linear problems of an elliptic variational inequality, In: Domain Decomposition Methods in Science and Engineering XX, (Eds. R. Bank et al.), Lecture Notes in Computational Science and Engineering, Vol. 91, Springer, 2013, pp. 319–326.10.1007/978-3-642-35275-1_35Search in Google Scholar

[25] J. Lee, Two domain decomposition methods for auxiliary linear problems for a multibody variational inequality, SIAM J. Sci. Comput. 35 (2013), No. 3, 1350–1375.10.1137/100783753Search in Google Scholar

[26] J. Li and O. B. Widlund, FETI-DP, BDDC, and block Cholesky method, Int. J. Num. Methods Engrg. 66 (2006), 250–271.10.1002/nme.1553Search in Google Scholar

[27] C. D. Mayer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.10.1137/1.9780898719512Search in Google Scholar

[28] A. Markopoulos, L. Říha, T. Brzobohatý, O. Meca, R. Kučera, and T. Kozubek, The HTFETI method variant gluing cluster subdomains by kernel matrices representing the rigid body motions. In: Proc. of DDM24 (Eds. P. E. Bjørstadt et al.), LNCSE, Vol. 125, Springer, Cham, 2018, pp. 543–551.10.1007/978-3-319-93873-8_52Search in Google Scholar

[29] C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems, Springer, Heidelberg, 2013.10.1007/978-3-642-23588-7Search in Google Scholar

[30] F.-X. Roux, Spectral analysis of interface operators associated with the preconditioned saddle-point principle domain decomposition method. In: Proc. of the Fifth International Conf. on Domain Decomposition Methods (Eds. D. E. Keyes, T. F. Chan, G. Meurant, J. S. Scroggs, R. G. Voigt), SIAM, Philadelphia, 1992, pp. 73–90.Search in Google Scholar

[31] K. Schäcke, On the Kronecker product, MSc. Thesis, University of Waterloo, 2004.Search in Google Scholar

[32] G. W. Stewart, Matrix Algorithms. Vol. I, Basic Decompositions, SIAM, Philadelphia, 1998.10.1137/1.9781611971408Search in Google Scholar

[33] A. Toselli and O. B. Widlund, Domain Decomposition Methods – Algorithms and Theory, Springer Series on Computational Mathematics, Vol. 34, Springer, Berlin, 2005.10.1007/b137868Search in Google Scholar

[34] P. Vodstrčil, J. Bouchala, M. Jarošová, and Z. Dostál, On conditioning of Schur complements of H-TFETI clusters for 2D problems governed by Laplacian, Appl. Math. 62 (2017), No. 6, 699–718.10.21136/AM.2017.0193-17Search in Google Scholar

Received: 2020-07-17
Revised: 2020-11-02
Accepted: 2020-12-31
Published Online: 2021-12-02
Published in Print: 2021-10-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/jnma-2020-0048/html
Scroll to top button