Next Article in Journal
Statistical Arbitrage in Emerging Markets: A Global Test of Efficiency
Previous Article in Journal
Boolean Functions and Permanents of Sylvester Hadamard Matrices
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On the Reciprocal Sums of Products of Two Generalized Bi-Periodic Fibonacci Numbers

Department of Electronic and Electrical Convergence Engineering, Hongik University, Sejong-Ro 2639, Sejong 30016, Korea
Mathematics 2021, 9(2), 178; https://doi.org/10.3390/math9020178
Submission received: 20 December 2020 / Revised: 9 January 2021 / Accepted: 15 January 2021 / Published: 17 January 2021
(This article belongs to the Section Computational and Applied Mathematics)

Abstract

:
This paper concerns the properties of the generalized bi-periodic Fibonacci numbers { G n } generated from the recurrence relation: G n = a G n 1 + G n 2 (n is even) or G n = b G n 1 + G n 2 (n is odd). We derive general identities for the reciprocal sums of products of two generalized bi-periodic Fibonacci numbers. More precisely, we obtain formulas for the integer parts of the numbers k = n ( a / b ) ξ ( k + 1 ) G k G k + m 1 , m = 0 , 2 , 4 , , and k = n 1 G k G k + m 1 , m = 1 , 3 , 5 , .

1. Introduction

As is well known, the Fibonacci sequence { F n } is generated from the recurrence relation F n = F n 1 + F n 2 ( n 2 ) with the initial conditions F 0 = 0 and F 1 = 1 . The Fibonacci numbers possess many interesting properties and appear in a variety of application fields [1].
Many authors tried to generalize the Fibonacci sequence. For example, Falcon and Plaza [2] considered the k-Fibonacci sequence. Edson and Yayenie [3] introduced the bi-periodic Fibonacci sequence { f n } defined by
f 0 = 0 , f 1 = 1 , f n = a f n 1 + f n 2 , if   n N e ; b f n 1 + f n 2 , if   n N o , ( n 2 ) ,
where N e ( N o , respectively) denotes the set of positive even (odd, respectively) integers. Filipponi [4] defined the incomplete Fibonacci sequence, and Ramírez [5] introduced the bi-periodic incomplete Fibonacci sequence.
In the remainder of this paper, we use the notation { G n } n = 0 = S ( G 0 , G 1 , a , b ) to denote the generalized bi-periodic Fibonacci numbers { G n } generated from the recurrence relation
G n = a G n 1 + G n 2 , i f   n N e ; b G n 1 + G n 2 , if   n N o , ( n 2 ) ,
with initial conditions G 0 and G 1 , where G 0 is a nonnegative integer, G 1 , a and b are positive integers.
Recently, Ohtsuka and Nakamura [6] reported an interesting property of the Fibonacci numbers { F n } = S ( 0 , 1 , 1 , 1 ) and proved the following identities:
k = n 1 F k 1 = F n F n 1 , if   n 2   and   n N e ; F n F n 1 1 , if   n 1   and   n N o ,
k = n 1 F k 2 1 = F n 1 F n 1 , if   n 2   and   n N e ; F n 1 F n , if   n 1   and   n N o ,
where · is the floor function.
Following the work of Ohtsuka and Nakamura, diverse results for the numbers of the form { G n } = S ( G 0 , G 1 , a , a ) have been reported in the literature (see [7,8,9,10,11,12,13,14,15] and references cited therein).
On the other hand, reciprocal sums of the generalized bi-periodic numbers were considered in [16,17]. In [16], Basbuk and Yazlik proved the following identity for { G n } = S ( 0 , 1 , a , b ) :
k = n ( a / b ) ψ ( k ) G k 1 = G n G n 1 , if   n 2   and   n N e ; G n G n 1 1 , if   n 1   and   n N o ,
where
ψ ( k ) = ξ ( k + 1 ) ξ ( n + 1 ) ( 1 ) n k n 2 ,
and ξ ( n ) is the parity function, such that
ξ ( n ) = 0 , i f   n { 0 } N e ; 1 , i f   n N o .
For { G n } = S ( G 0 , G 1 , a , b ) , Choi and Choo [17] identified the integer parts for the numbers
k = n ( a / b ) ξ ( k + 1 ) G k 2 1 .
In this paper, we extend the results in [17] by considering the reciprocal sums of products of two generalized bi-periodic Fibonacci numbers. More precisely, we obtain general identities for the numbers
k = n ( a / b ) ξ ( k + 1 ) G k G k + m 1 , m { 0 } N e ,
and
k = n 1 G k G k + m 1 , m N 0 .

2. Results

2.1. The Case where m { 0 } N e

Lemma 1 below will be used to prove the results for the case where m N e .
Lemma 1.
Assume that m { 0 } N e . Then, for { G n } = S ( G 0 , G 1 , a , b ) , (a)–(e) below hold:
(a) 
G n + 2 G n + m + 1 G n G n + m 1 = a ξ ( n ) b ξ ( n + 1 ) G n G n + m + a ξ ( n + 1 ) b ξ ( n ) G n + 1 G n + m + 1 .
(b) 
G n + 1 G n + m G n + 2 G n + m 1 = ( 1 ) n ( G m G 3 G m + 1 G 2 ) .
(c) 
a ξ ( n + 1 ) b ξ ( n ) G n 1 G n + m + 1 a ξ ( n ) b ξ ( n + 1 ) G n G n + m = ( 1 ) n ( a G m + 1 G 1 b G m + 2 G 0 ) .
(d) 
G n + 1 G n + m 2 G n G n + m 1 = ( 1 ) n ( G m G 3 G m + 1 G 2 ) .
(e) 
G n 1 G n + m G n G n + m 1 = ( 1 ) n ( G m G 1 G m + 1 G 0 ) .
Proof. 
Since
G n = a ξ ( n 1 ) b ξ ( n ) G n 1 + G n 2 ,
then, (a) follows from the identity
G n G n + m + 1 = ( G n + 2 a ξ ( n + 1 ) b ξ ( n ) G n + 1 ) G n + m + 1 = G n ( a ξ ( n ) b ξ ( n + 1 ) G n + m + G n + m 1 ) .
(b)–(e) are special cases of ([18], Theorem 2.2). □
Theorem 1.
Consider the generalized bi-periodic Fibonacci numbers { G n } = S ( G 0 , G 1 , a , b ) and let
Φ m : = b ( G m G 3 G m + 1 G 2 ) .
If m { 0 } N e , then (a) and (b) below hold:
(a) 
If
Φ m a b + 2 Z ,
define
g m : = Φ m a b + 2 + Δ ,
where
Δ = 1 , i f   Φ m > 0 ; 0 , i f   Φ m < 0 .
(i) If Φ m > 0 , then there exist positive integers n 0 and n 1 such that
k = n a b ξ ( k + 1 ) G k G k + m 1 = b G n G n + m 1 + g m 1 , i f   n n 0   a n d   n N e ; b G n G n + m 1 g m , i f   n n 1   a n d   n N o .
(ii) If Φ m < 0 , then there exist positive integers n 2 and n 3 such that
k = n a b ξ ( k + 1 ) G k G k + m 1 = b G n G n + m 1 + g m , i f   n n 2   a n d   n N e ; b G n G n + m 1 g m 1 , i f   n n 3   a n d   n N o .
(b) 
If
Φ m a b + 2 Z ,
define
g ^ m : = Φ m a b + 2 ,
and
Γ m : = g ^ m b ( b G m + 2 G 0 a G m + 1 G 1 ) g ^ m 2 .
(i) If Γ m 0 , then there exist positive integers n 4 and n 5 , such that
k = n a b ξ ( k + 1 ) G k G k + m 1 = b G n G n + m 1 + g ^ m , i f   n n 4   a n d   n N e ; b G n G n + m 1 g ^ m , i f   n n 5   a n d   n N o .
(ii) If Γ m < 0 , then there exist positive integers n 4 and n 5 , such that
k = n a b ξ ( k + 1 ) G k G k + m 1 = b G n G n + m 1 + g ^ m 1 , i f   n n 6   a n d   n N e ; b G n G n + m 1 g ^ m 1 , i f   n n 7   a n d   n N o .
Proof. 
(a) To prove (5), assume that Φ m > 0 . Then
Φ m g m ( a b + 2 ) < 0 .
Firstly, consider
X 1 = 1 b G n G n + m 1 + ( 1 ) n g m 1 b G n + 2 G n + m + 1 + ( 1 ) n g m a b ξ ( n + 1 ) G n G n + m a b ξ ( n ) G n + 1 G n + m + 1 = Y 1 ( b G n G n + m 1 + ( 1 ) n g m ) ( b G n + 2 G n + m + 1 + ( 1 ) n g m ) G n G n + 1 G n + m G n + m + 1 ,
where, by Lemma 1 (a)
Y 1 = a b ξ ( n ) G n G n + m + a b ξ ( n + 1 ) G n + 1 G n + m + 1 Y ^ 1 ,
with
Y ^ 1 = b 2 ( G n G n + 1 G n + m G n + m + 1 G n G n + 2 G n + m 1 G n + m + 1 ) ( 1 ) n g m b ( G n G n + m 1 + G n + 2 G n + m + 1 ) g m 2 .
By Lemma 1 (b,c), we have
G n G n + 1 G n + m G n + m + 1 G n G n + 2 G n + m 1 G n + m + 1 = ( G n + 1 G n + m G n + 2 G n + m 1 ) G n G n + m + 1 = ( 1 ) n ( G m G 3 G m + 1 G 2 ) G n G n + m + 1 ,
and
G n G n + m 1 + G n + 2 G n + m + 1 = G n ( G n + m + 1 a ξ ( n + m ) b ξ ( n + m + 1 ) G n + m ) + ( a ξ ( n + 1 ) b ξ ( n ) G n + 1 + G n ) G n + m + 1 = 2 G n G n + m + 1 a ξ ( n ) b ξ ( n + 1 ) G n G n + m + a ξ ( n + 1 ) b ξ ( n ) ( a ξ ( n ) b ξ ( n + 1 ) G n + G n 1 ) G n + m + 1 = ( a b + 2 ) G n G n + m + 1 a ξ ( n ) b ξ ( n + 1 ) G n G n + m + a ξ ( n + 1 ) b ξ ( n ) G n 1 G n + m + 1 = ( a b + 2 ) G n G n + m + 1 + ( 1 ) n ( a G m + 1 b G m + 2 G 0 ) .
Then
Y ^ 1 = ( 1 ) n b 2 ( G m G 3 G m + 1 G 2 ) G n G n + m + 1 ( 1 ) n g m b ( a b + 2 ) G n G n + m + 1 + ( 1 ) n ( a G m + 1 b G m + 2 G 0 ) g m 2 = ( 1 ) n b Φ m g ( a b + 2 ) G n G n + m + 1 + g m b ( b G m + 2 G 0 a G m + 1 G 1 ) g m 2 .
If n N e , then there exists a positive integer m 0 such that, for n m 0 , X 1 < 0 , and
1 b G n G n + m 1 + g m 1 b G n + 2 G n + m + 1 + g m < a b ξ ( n + 1 ) G n G n + m + a b ξ ( n ) G n + 1 G n + m + 1 .
Repeatedly applying the above inequality, we have
1 b G n G n + m 1 + g m < k = n a b ξ ( k + 1 ) G k G k + m ,   if   n m 0   and   n N e .
Similarly, we obtain, for some positive integer m 1 ,
k = n a b ξ ( k + 1 ) G k G k + m < 1 b G n G n + m 1 g m ,   if   n m 1   and   n N o .
Next, consider
X 2 = 1 b G n G n + m 1 + ( 1 ) n g m 1 1 b G n + 1 G n + m + ( 1 ) n + 1 g m 1 a b ξ ( n + 1 ) G n G n + m = Y 2 ( b G n G n + m 1 + ( 1 ) n g m 1 ) ( b G n + 1 G n + m + ( 1 ) n + 1 g m 1 ) G n G n + m ,
where
Y 2 = b G n G n + 1 G n + m 2 a ξ ( n + 1 ) b 1 + ξ ( n ) G n G n + 1 G n + m 1 G n + m b G n 2 G n + m 1 G n + m + 1 ( 1 ) n g m 2 G n G n + m + a ξ ( n + 1 ) b ξ ( n ) ( G n + 1 G n + m G n G n + m 1 ) + a ξ ( n + 1 ) b ξ ( n ) ( G n G n + m 1 + G n + 1 G n + m ) + a ξ ( n + 1 ) b ξ ( n ) 1 ( g m 2 1 ) .
Using Lemma 1 (d,e), we have
b G n G n + 1 G n + m 2 a ξ ( n + 1 ) b 1 + ξ ( n ) G n G n + 1 G n + m 1 G n + m b G n 2 G n + m 1 G n + m = b G n G n + 1 G n + m ( G n + m a ξ ( n + 1 ) b ξ ( n ) G n + m 1 ) b G n 2 G n + m 1 G n + m = b G n G n + m ( G n + 1 G n + m 2 G n G n + m 1 ) = ( 1 ) n b ( G m G 3 G m + 1 G 2 ) G n G n + m ,
and
2 G n G n + m + a ξ ( n + 1 ) b ξ ( n ) ( G n + 1 G n + m G n G n + m 1 ) = 2 G n G n + m + a ξ ( n + 1 ) b ξ ( n ) ( a ξ ( n ) b ξ ( n + 1 ) G n + G n 1 ) G n + m a ξ ( n + 1 ) b ξ ( n ) G n G n + m 1 ) = ( a b + 2 ) G n G n + m + a ξ ( n + 1 ) b ξ ( n ) ( G n 1 G n + m G n G n + m 1 ) = ( a b + 2 ) G n G n + m + ( 1 ) n a ξ ( n + 1 ) b ξ ( n ) ( G m G 1 G m + 1 G 0 ) .
Hence we obtain
Y 2 = ( 1 ) n Φ m g m ( a b + 2 ) G n G n + m + a ξ ( n + 1 ) b ξ ( n ) ( G n G n + m 1 + G n + 1 G n + m ) a ξ ( n + 1 ) b ξ ( n ) g m ( G m G 1 G m + 1 G 0 ) + a ξ ( n + 1 ) b ξ ( n ) 1 ( g m 2 1 ) ,
and there exists a positive integer m 2 such that, for n m 2 , X 2 > 0 , and
a b ξ ( n + 1 ) G n G n + m < 1 b G n G n + m 1 + ( 1 ) n g m 1 1 b G n + 1 G n + m + ( 1 ) n + 1 g m 1 .
Repeatedly applying the above inequality, we have
k = n a b ξ ( k + 1 ) G k G k + m < 1 b G n G n + m 1 + ( 1 ) n g m 1 ,   if   n m 2 .
Similarly, consider
X 3 = 1 b G n G n + m 1 + ( 1 ) n g m + 1 1 b G n + 1 G n + m + ( 1 ) n + 1 g m + 1 a b ξ ( n + 1 ) G n G n + m = Y 3 ( b G n G n + m 1 + ( 1 ) n g m + 1 ) ( b G n + 1 G n + m + ( 1 ) n + 1 g m + 1 ) G n G n + m ,
where
Y 3 = Y 2 2 a ξ ( n + 1 ) b ξ ( n ) ( G n G n + m 1 + G n + 1 G n + m ) = ( 1 ) n Φ m g m ( a b + 2 ) G n G n + m a ξ ( n + 1 ) b ξ ( n ) ( G n G n + m 1 + G n + 1 G n + m ) a ξ ( n + 1 ) b ξ ( n ) g m ( G m G 1 G m + 1 G 0 ) + a ξ ( n + 1 ) b ξ ( n ) 1 ( g m 2 1 ) .
There exists a positive integer m 3 such that, for n m 3 , X 3 < 0 , and
1 b G n G n + m 1 + ( 1 ) n g m + 1 1 b G n + 1 G n + m + ( 1 ) n + 1 g m + 1 < a b ξ ( n + 1 ) G n G n + m ,
from which we have
1 b G n G n + m 1 + ( 1 ) n g m + 1 < k = n a b ξ ( k + 1 ) G k G k + m ,   if   n m 3 .
Then (5) follows from (9)–(12).
Now, suppose that Φ m < 0 . In this case, we have
Φ m g m ( a b + 2 ) > 0 ,
and (9)–(12) are respectively modified as
k = n a b ξ ( k + 1 ) G k G k + m < 1 b G n G n + m 1 + g m ,   if   n m 4   and   n N e ,
1 b G n G n + m 1 g m < k = n a b ξ ( k + 1 ) G k G k + m ,   if   n m 5   and   n N o ,
k = n a b ξ ( k + 1 ) G k G k + m < 1 b G n G n + m 1 + ( 1 ) n g m 1 ,   if   n m 6 ,
and
1 b G n G n + m 1 + ( 1 ) n g m + 1 < k = n a b ξ ( k + 1 ) G k G k + m ,   if   n m 7 .
Then, (6) easily follows and the proof of (a) is completed.
(b) Suppose that
Φ m a b + 2 Z .
We recall the proof of (a). If Γ m 0 , then replacing g m by g ^ m , we have Y ^ 1 = Γ m 0 , and there exists a positive integer m 8 such that X 1 > 0 if n m 8 . Hence, we obtain
k = n a b ξ ( k + 1 ) G k G k + m < 1 b G n G n + m 1 + ( 1 ) n g ^ m ,   if   n m 8 .
Similarly, there exists a positive integer m 9 such that X 3 < 0 if n m 9 , from which we have
1 b G n G n + m + ( 1 ) n g ^ + 1 < k = n a b ξ ( k + 1 ) G k G k + m ,   if   n m 9 .
Then, (7) follows from (17) and (18). (8) can be proved similarly, and details are omitted. □
If a = b , then Theorem 1 reduces ([7], Theorem 2.1) with m { 0 } N e and { G n } = { H n } = S ( G 0 , G 1 , a , a ) .
If m = 0 , then Theorem 1 reduces ([17], Theorem 2).

2.2. The Case Where m N o

To deal with the case where m N o , we need the following lemma.
Lemma 2.
Assume that m N o . Then, for { G n } = S ( G 0 , G 1 , a , b ) , (a)–(e) below hold:
(a) 
G n + 2 G n + m + 1 G n G n + m 1 = a ξ ( n + 1 ) b ξ ( n ) ( G n G n + m + G n + 1 G n + m + 1 ) .
(b) 
a ξ ( n + 1 ) b ξ ( n ) G n + 1 G n + m a ξ ( n ) b ξ ( n + 1 ) G n + 2 G n + m 1 = ( 1 ) n ( a G m G 3 b G m + 1 G 2 ) .
(c) 
G n 1 G n + m + 1 G n G n + m = ( 1 ) n ( G m + 2 G 0 G m + 1 G 1 ) .
(d) 
a ξ ( n + 1 ) b ξ ( n ) G n + 1 G n + m 2 a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 = ( 1 ) n ( a G m G 3 b G m + 1 G 2 ) .
(e) 
a ξ ( n + 1 ) b ξ ( n ) G n 1 G n + m a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 = ( 1 ) n ( a G m G 1 b G m + 1 G 0 ) .
Proof. 
(a) follows from the identity
G n G n + m + 1 = ( G n + 2 a ξ ( n + 1 ) b ξ ( n ) G n + 1 ) G n + m + 1 = G n ( a ξ ( n + m ) b ξ ( n + m + 1 ) G n + m + G n + m 1 ) .
(b)–(e) are special cases of ([18], Theorem 2.2). □
Theorem 2.
Consider the generalized bi-periodic Fibonacci numbers { G n } = S ( G 0 , G 1 , a , b ) and let
Δ m : = a G m G 3 b G m + 1 G 2 .
If m N 0 , then (a) and (b) below hold:
(a) 
If
Δ m a b + 2 Z ,
define
h m : = Δ m a b + 2 + Δ ,
where
Δ = 1 , i f   Δ m > 0 ; 0 , i f   Δ m < 0 .
(i) If Δ m > 0 , then there exist positive integers n 0 and n 1 such that
k = n 1 G k G k + m 1 = b G n G n + m 1 + h m 1 , i f   n n 0   a n d   n N e ; a G n G n + m 1 h m , i f   n n 1   a n d   n N o .
(ii) If Δ m < 0 , then there exist positive integers n 2 and n 3 such that
k = n 1 G k G k + m 1 = b G n G n + m 1 + h m , i f   n n 2   a n d   n N e ; a G n G n + m 1 h m 1 , i f   n n 3   a n d   n N o .
(b) 
If
Δ m a b + 2 Z ,
define
h ^ m : = Δ m a b + 2 ,
and
Ψ m : = h ^ m a b ( G m + 1 G 1 G m + 2 G 0 ) h ^ m 2 .
(i) If Ψ m 0 , then there exist positive integers n 4 and n 5 such that
k = n 1 G k G k + m 1 = a G n G n + m 1 + h ^ m ,   i f   n n 4   a n d   n N e ; b G n G n + m 1 h ^ m ,   i f   n n 5   a n d   n N o .
(ii) If Ψ m < 0 , then there exist positive integers n 6 and n 7 such that
k = n 1 G k G k + m 1 = a G n G n + m 1 + h ^ m 1 ,   i f   n n 6   a n d   n N e ; b G n G n + m 1 h ^ m 1 ,   i f   n n 7   a n d   n N o .
Proof. 
(a) To prove (19), assume that Δ m > 0 . Then
Δ m h m ( a b + 2 ) < 0 .
Firstly, consider
X 1 = 1 a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + ( 1 ) n h m 1 a ξ ( n ) b ξ ( n + 1 ) G n + 2 G n + m + 1 + ( 1 ) n h m 1 G n G n + m 1 G n + 1 G n + m + 1 = Y 1 ( a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + ( 1 ) n h m ) ( a ξ ( n ) b ξ ( n + 1 ) G n + 2 G n + m + 1 + ( 1 ) n h m ) G n G n + 1 G n + m G n + m + 1 ,
where, by Lemma 2 (a)
Y 1 = ( G n G n + m + G n + 1 G n + m + 1 ) Y ^ 1 ,
with
Y ^ 1 = a b G n G n + 1 G n + m G n + m + 1 a 2 ξ ( n ) b 2 ξ ( n + 1 ) G n G n + 2 G n + m 1 G n + m + 1 ( 1 ) n h m a ξ ( n ) b ξ ( n + 1 ) ( G n G n + m 1 + G n + 2 G n + m + 1 ) h m 2 .
By Lemma 2 (b,c), we have
a b G n G n + 1 G n G n + m a 2 ξ ( n ) b 2 ξ ( n + 1 ) G n G n + 2 G n + m 1 G n + m + 1 = ( a b G n + 1 G n + m a 2 ξ ( n ) b 2 ξ ( n + 1 ) G n + 2 G n + m 1 ) G n G n + m + 1 = a ξ ( n ) b ξ ( n + 1 ) ( a ξ ( n + 1 ) b ξ ( n ) G n + 1 G n + m a ξ ( n ) b ξ ( n + 1 ) G n + 2 G n + m 1 ) G n G n + m + 1 = ( 1 ) n a ξ ( n ) b ξ ( n + 1 ) ( a G m G 3 b G m + 1 G 2 ) G n G n + m + 1 ,
and
G n G n + m 1 + G n + 2 G n + m + 1 = G n ( G n + m + 1 a ξ ( n + m ) b ξ ( n + m + 1 ) G n + m ) + ( a ξ ( n + 1 ) b ξ ( n ) G n + 1 + G n ) G n + m + 1 = 2 G n G n + m + 1 a ξ ( n + 1 ) b ξ ( n ) G n G n + m + a ξ ( n + 1 ) b ξ ( n ) ( a ξ ( n ) b ξ ( n + 1 ) G n + G n 1 ) G n + m + 1 = ( a b + 2 ) G n G n + m + 1 + a ξ ( n + 1 ) b ξ ( n ) ( G n 1 G n + m + 1 G n G n + m ) = ( a b + 2 ) G n G n + m + 1 + ( 1 ) n a ξ ( n + 1 ) b ξ ( n ) ( G m + 2 G 0 G m + 1 G 1 ) .
Then
Y ^ 1 = ( 1 ) n a ξ ( n ) b ξ ( n + 1 ) ( a G m G 3 b G m + 1 G 2 ) G n G n + m + 1 ( 1 ) n h m a ξ ( n ) b ξ ( n + 1 ) ( a b + 2 ) G n G n + m + 1 + ( 1 ) n a ξ ( n + 1 ) b ξ ( n ) ( G m + 2 G 0 G m + 1 G 1 ) h m 2 = ( 1 ) n a ξ ( n ) b ξ ( n + 1 ) Δ m h m ( a b + 2 ) G n G n + m + 1 + h m a b ( G m + 1 G 1 G m + 2 G 0 ) h m 2 .
If n N e , then there exists a positive integer m 0 such that, for n m 0 , X 1 < 0 , and
1 a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + h m 1 a ξ ( n ) b ξ ( n + 1 ) G n + 2 G n + m + 1 + h m < 1 G n G n + m + 1 G n + 1 G n + m + 1 .
Repeatedly applying the above inequality, we have
1 a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + h m < k = n 1 G k G k + m ,   if   n m 0   and   n N e .
Similarly, we obtain, for some positive integer m 1 ,
k = n 1 G k G k + m < 1 a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 h m ,   if   n m 1   and   n N o .
Next, consider
X 2 = 1 a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + ( 1 ) n h m 1 1 a ξ ( n + 1 ) b ξ ( n ) G n + 1 G n + m + ( 1 ) n + 1 h m 1 1 G n G n + m = Y 2 ( a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + ( 1 ) n h m 1 ) ( a ξ ( n + 1 ) b ξ ( n ) G n + 1 G n + m + ( 1 ) n + 1 h m 1 ) G n G n + m ,
where
Y 2 = a ξ ( n + 1 ) b ξ ( n ) G n G n + 1 G n + m 2 a b G n G n + 1 G n + m 1 G n + m a ξ ( n ) b ξ ( n + 1 ) G n 2 G n + m 1 G n + m + 1 ( 1 ) n h m ( 2 G n G n + m + a ξ ( n + 1 ) b ξ ( n ) G n + 1 G n + m a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 ) + a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + a ξ ( n + 1 ) b ξ ( n ) G n + 1 G n + m ) + h m 2 1 .
Using Lemma 2 (d,e), we have
a ξ ( n + 1 ) b ξ ( n ) G n G n + 1 G n + m 2 a b G n G n + 1 G n + m 1 G n + m a ξ ( n ) b ξ ( n + 1 ) G n 2 G n + m 1 G n + m + 1 = a ξ ( n + 1 ) b ξ ( n ) G n G n + 1 G n + m ( G n + m a ξ ( n ) b ξ ( n + 1 ) G n + m 1 ) a ξ ( n ) b ξ ( n + 1 ) G n 2 G n + m 1 G n + m = G n G n + m ( a ξ ( n + 1 ) b ξ ( n ) G n + 1 G n + m 2 a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 ) = ( 1 ) n ( a G m G 3 b G m + 1 G 2 ) G n G n + m ,
and
2 G n G n + m + a ξ ( n + 1 ) b ξ ( n ) G n + 1 G n + m a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 ) = 2 G n G n + m + a ξ ( n + 1 ) b ξ ( n ) ( a ξ ( n ) b ξ ( n + 1 ) G n + G n 1 ) G n + m a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 ) = ( a b + 2 ) 2 G n G n + m + a ξ ( n + 1 ) b ξ ( n ) G n 1 G n + m a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 ) = ( a b + 2 ) 2 G n G n + m + ( 1 ) n ( a G m G 1 b G m + 1 G 0 ) .
Hence we obtain
Y 2 = ( 1 ) n Δ m h m ( a b + 2 ) G n G n + m + a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + a ξ ( n + 1 ) b ξ ( n ) G n + 1 G n + m ) h m ( a G m G 1 b G m + 1 G 0 ) + h m 2 1 ,
and there exists a positive integer m 2 such that, for n m 2 , X 2 > 0 , and
1 G n G n + m < 1 a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + ( 1 ) n h m 1 1 a ξ ( n + 1 ) b ξ ( n ) G n + 1 G n + m + ( 1 ) n + 1 h m 1 .
Repeatedly applying the above inequality, we have
k = n 1 G k G k + m < 1 a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + ( 1 ) n h m 1 ,   if   n m 2 .
Finally, consider
X 3 = 1 a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + ( 1 ) n h m + 1 1 a ξ ( n + 1 ) b ξ ( n ) G n + 1 G n + m + ( 1 ) n + 1 h m + 1 1 G n G n + m = Y 3 ( a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + ( 1 ) n h m + 1 ) ( a ξ ( n + 1 ) b ξ ( n ) G n + 1 G n + m + ( 1 ) n + 1 h m + 1 ) G n G n + m ,
where
Y 3 = Y 2 2 ( a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + a ξ ( n + 1 ) b ξ ( n ) G n + 1 G n + m ) = ( 1 ) n Δ m h m ( a b + 2 ) G n G n + m a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 a ξ ( n + 1 ) b ξ ( n ) G n + 1 G n + m ) h m ( a G m G 1 b G m + 1 G 0 ) + h m 2 1 .
There exists a positive integer m 3 such that, for n m 3 , X 3 < 0 , and
1 a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + ( 1 ) n h m + 1 1 a ξ ( n + 1 ) b ξ ( n ) G n + 1 G n + m + ( 1 ) n + 1 h m + 1 < 1 G n G n + m .
Repeatedly applying the above inequality, we have
1 a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + ( 1 ) n h m + 1 < k = n 1 G k G k + m ,   if   n m 2 .
Then (19) follows from (23)–(26).
Now suppose that Δ m < 0 . In this case, we have
Δ m h m ( a b + 2 ) > 0 ,
and (23)–(26) are respectively modified as
k = n 1 G k G k + m < 1 a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + h m ,   if   n m 4   and   n N e ,
1 a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 h m < k = n 1 G k G k + m ,   if   n m 5   and   n N o ,
k = n 1 G k G k + m < 1 a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + ( 1 ) n h m 1 ,   if   n m 6 ,
and
1 a ξ ( n ) b ξ ( n + 1 ) G n G n + m 1 + ( 1 ) n h m + 1 < k = n 1 G k G k + m ,   if   n m 7 .
Then, (20) easily follows and the proof of (a) is completed.
(b) (21) and (22) can be proved as in Theorem 1, and details are omitted. □
If a = b , then Theorem 2 reduces ([7], (Theorem 2.1) with m N o and { G n } = { H n } = S ( G 0 , G 1 , a , a ) .

3. Discussion

This paper concerned the properties of the generalized bi-periodic Fibonacci numbers { G n } generated from the recurrence relation: G n = a G n 1 + G n 2 (n is even) or G n = b G n 1 + G n 2 (n is odd). We derived quite a general identities related to reciprocal sums of products of two generalized bi-periodic Fibonacci numbers. More precisely, we obtained formulas for the integer parts of the numbers
k = n a b ξ ( k + 1 ) G k G k + m 1 , m = 0 , 2 , 4 , ,
and
k = n 1 G k G k + m 1 , m = 1 , 3 , 5 , .
The identities obtained in this paper include many existing results as special cases. As already noted in [16], an open problem is whether we can obtain similar results for the same numbers of higher order. It seems that we can also derive similar identities for the numbers of the form
k = n 1 G k H k + m 1 , m = 0 , 1 , 2 , 3 , ,
where { G n } = S ( G 0 , G 1 , a , b ) and { H n } = S ( H 0 , H 1 , a , b ) , which is left as another open problem.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Koshy, T. Fibonacci and Lucas Numbers with Applications; Wiley: New York, NY, USA, 2001. [Google Scholar]
  2. Falcon, S.; Plaza, A. On the Fibonacci k-numbers. Chaos Solitons Fractals 2007, 32, 1615–1624. [Google Scholar] [CrossRef]
  3. Edson, M.; Yayenie, O. A new generalization of Fibonacci sequence and extended Binet’s formula. Integers 2009, 9, 639–654. [Google Scholar] [CrossRef]
  4. Filipponi, P. Incomplete Fibonacci and Lucas numbers. Rend. Circ. Mat. Palermo 1996, 45, 37–56. [Google Scholar] [CrossRef]
  5. Ramírez, J.L. Bi-periodic incomplete Fibonacci sequences. Ann. Math. Inform. 2013, 42, 83–92. [Google Scholar]
  6. Ohtsuka, H.; Nakamura, S. On the sum of reciprocal Fibonacci numbers. Fibonacci Quart. 2008, 46, 153–159. [Google Scholar]
  7. Choo, Y. On the reciprocal sums of products of two generalized Fibonacci numbers. Int. J. Math. Anal. 2019, 2019 13, 539–549. [Google Scholar] [CrossRef]
  8. Choi, G.; Choo, Y. On the reciprocal sums of products of Fibonacci and Lucas numbers. Filomat 2018, 32, 2911–2920. [Google Scholar] [CrossRef]
  9. Holliday, S.; Komatsu, T. On the sum of reciprocal generalized Fibonacci numbers. Integers 2011, 2011, 11. [Google Scholar] [CrossRef]
  10. Kuhapatanakul, K. On the sums of reciprocal generalized Fibonacci numbers. J. Integer Seq. 2013, 16, 3. [Google Scholar]
  11. Liu, R.; Wang, A. Sums of products of two reciprocal Fibonacci numbers. Adv. Differ. Equ. 2016, 2016, 1136. [Google Scholar] [CrossRef] [Green Version]
  12. Wang, A.; Wen, P. On the partial finite sums of the reciprocals of the Fibonacci numbers. J. Inequal. Appl. 2015, 15, 73. [Google Scholar] [CrossRef] [Green Version]
  13. Wang, A.; Yuan, T. Alternating sums of the reciprocal Fibonacci numbers. J. Integer Seq. 2017, 20, 17.1.4. [Google Scholar]
  14. Wang, A.; Zhang, F. The reciprocal sums of even and odd terms in the Fibonacci sequence. J. Inequal. Appl. 2015, 2015, 376. [Google Scholar] [CrossRef] [Green Version]
  15. Zhang, W.; Wang, T. The infinite sum of reciprocal Pell numbers. Appl. Math. Comput. 2012, 218, 6164–6167. [Google Scholar]
  16. Basbuk, M.; Yazlik, Y. On the sum of reciprocal of generalized bi-periodic Fibonacci numbers. Miskolc Math. Notes 2016, 17, 35–41. [Google Scholar] [CrossRef]
  17. Choi, G.; Choo, Y. On the reciprocal sums of square of generalized bi-periodic Fibonacci numbers. Miskolc Math. Notes 2018, 19, 201–209. [Google Scholar] [CrossRef]
  18. Choo, Y. On the generalizations of Fibonacci identities. Results Math. 2017, 71, 347–356. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Choo, Y. On the Reciprocal Sums of Products of Two Generalized Bi-Periodic Fibonacci Numbers. Mathematics 2021, 9, 178. https://doi.org/10.3390/math9020178

AMA Style

Choo Y. On the Reciprocal Sums of Products of Two Generalized Bi-Periodic Fibonacci Numbers. Mathematics. 2021; 9(2):178. https://doi.org/10.3390/math9020178

Chicago/Turabian Style

Choo, Younseok. 2021. "On the Reciprocal Sums of Products of Two Generalized Bi-Periodic Fibonacci Numbers" Mathematics 9, no. 2: 178. https://doi.org/10.3390/math9020178

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop