Skip to main content
Log in

PIR Codes with Short Block Length

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this work private information retrieval (PIR) codes are studied. In a k-PIR code, s information bits are encoded in such a way that every information bit has k mutually disjoint recovery sets. The main problem under this paradigm is to minimize the number of encoded bits given the values of s and k, where this value is denoted by P(sk). The main focus of this work is to analyze P(sk) for a large range of parameters of s and k. In particular, we improve upon several of the existing results on this value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that the definition of a k-PIR code actually depends on the representing generator matrix and not the code itself.

  2. We remark that with respect to lower bounds on N(sk) it makes also sense to check the entries at http://mint.sbg.ac.at which sometimes contain improvements.

  3. More precisely, it is a strict improvement for \(s=4\) and all \(s\geqslant 7\). An exact formula for N(s, 3), and so also for N(s, 4), exists. It is attained by the Hamming codes and puncturings thereof. The lower bound follows from the Hamming or sphere packing bound.

  4. As an abbreviation set \(k=2^{s-1}\) and number the \(2^{s-1}\) vectors of \(\mathbb {F}_2^s\) with ith component equal to zero by \(x^{1,i},\dots , x^{k,i}\), where we assume that \(x^{1,i}\) is the zero vector. For each \(1\leqslant i\leqslant s\) we can take the recovery sets \(R_1^i=\left\{ x^{1,i}+e_i\right\} \) and \(R_j^i=\left\{ x^{j,i},x^{j,i}+e_i\right\} \) for \(2\leqslant j\leqslant k\).

  5. If the recovery sets have cardinalities in \(\left\{ c_1,\dots ,c_l\right\} \) and there are \(m_i\) recovery sets of cardinality \(c_i\) for \(1\leqslant i\leqslant l\), then we say that the recovery sets have cardinality distribution \(c_1^{m_1} \dots c_l^{m_l}\). The recovery sets for \(e_1,\dots ,e_9\) are given as follows:

    • \(e_1\): \(\{0\}\), \(\{1,4,9\}\), \(\{2,16,17\}\), \(\{3,8,19\}\), \(\{5,6,13\}\), \(\{7,21,25\}\), \(\{10,26,27\}\), \(\{11,12,14\}\), \(\{15,20,23\}\), \(\{18,22,24\}\).

    • \(e_2\): \(\{0,4,9\}\), \(\{1\}\), \(\{2,5,10\}\), \(\{3,23,24\}\), \(\{6,7,16\}\), \(\{8,13,22\}\), \(\{11,19,21\}\), \(\{12,25,27\}\), \(\{14,15,18\}\), \(\{17,20,26\}\).

    • \(e_3\): \(\{0,16,17\}\), \(\{1,5,10\}\), \(\{2\}\), \(\{3,6,12\}\), \(\{4,19,20\}\), \(\{7,8,23\}\), \(\{9,13,14\}\), \(\{11,24,25\}\), \(\{15,22,27\}\), \(\{18,21,26\}\).

    • \(e_4\): \(\{0,8,19\}\), \(\{1,23,24\}\), \(\{2,6,12\}\), \(\{3\}\), \(\{4,7,15\}\), \(\{5,9,11\}\), \(\{10,16,18\}\), \(\{13,25,26\}\), \(\{14,20,22\}\), \(\{17,21,27\}\).

    • \(e_5\) \(\{0,1,9\}\), \(\{2,19,20\}\), \(\{3,7,15\}\), \(\{4\}\), \(\{5,8,21\}\), \(\{6,10,14\}\), \(\{11,17,18\}\), \(\{12,23,26\}\), \(\{13,24,27\}\), \(\{16,22,25\}\).

    • \(e_6\): \(\{0,6,13\}\), \(\{1,2,10\}\), \(\{3,9,11\}\), \(\{4,8,21\}\), \(\{5\}\), \(\{7,12,18\}\), \(\{14,24,26\}\), \(\{15,19,25\}\), \(\{16,20,27\}\), \(\{17,22,23\}\).

    • \(e_7\): \(\{0,5,13\}\), \(\{1,7,16\}\), \(\{2,3,12\}\), \(\{4,10,14\}\), \(\{6\}\), \(\{8,15,26\}\), \(\{9,21,22\}\), \(\{11,23,27\}\), \(\{17,19,24\}\), \(\{18,20,25\}\).

    • \(e_8\): \(\{0,21,25\}\), \(\{1,6,16\}\), \(\{2,8,23\}\), \(\{3,4,15\}\), \(\{5,12,18\}\), \(\{7\}\), \(\{9,20,24\}\), \(\{10,13,17\}\), \(\{11,22,26\}\), \(\{14,19,27\}\).

    • \(e_9\): \(\{0,3,19\}\), \(\{1,13,22\}\), \(\{2,7,23\}\), \(\{4,5,21\}\), \(\{6,15,26\}\), \(\{8\}\), \(\{9,18,27\}\), \(\{10,11,20\}\), \(\{12,16,24\}\), \(\{14,17,25\}\).

  6. “It can be easily verified that in general \(N(k,t)\leqslant L_P(k,t)\) for small values of \(t>4\). In fact, we will show in Section V that N(kt) is a tighter lower bound on \(N_P(k,t)\) than \(L_P(k,t)\) for \(r=6\).”.

  7. The value \(N(92,5)=106\) is taken from http://mint.sbg.ac.at.

  8. Note that for \(s=7\) there are two possible cycle types of the cyclic group \(\mathbb {Z}_3\) in \(S_7\) up to conjugation.

  9. The code is even unique within the class of non-linear codes, see [9].

  10. All exhaustive lists of binary linear codes have been enumerated with the software package LinCode, see [16].

  11. We refer to a doubled Reed-Muller code as the code generate by concatenating a generator of a Reed-Muller code twice with itself.

  12. Note that this can be slightly ambiguous, if the exact value was determined. In [18] the upper bound \(P(5,8)\leqslant 18\) was obtained and we only improved the lower bound.

References

  1. Asi H., Yaakobi E.: Nearly optimal constructions of PIR and batch codes. IEEE Trans. Inf. Theory 65(2), 947–964 (2019).

    Article  MathSciNet  Google Scholar 

  2. Baumert L., McEliece R.: A note on the Griesmer bound. IEEE Trans. Inf. Theory 19(2), 134–135 (1973).

    Article  MathSciNet  Google Scholar 

  3. Beutelspacher A.: Partial spreads in finite projective spaces and partial designs. Math. Z. 145(3), 211–229 (1975).

    Article  MathSciNet  Google Scholar 

  4. Bouyukhev I., Jaffe D.B., Vavrek V.: The smallest length of eight-dimensional binary linear codes with prescribed minimum distance. IEEE Trans. Inf. Theory 46(4), 1539–1544 (2000).

    Article  MathSciNet  Google Scholar 

  5. Carvalho C., Ramírez-Mondragón X., Neumann V.G., Tapia-Recillas H.: Projective Reed-Muller type codes on higher dimensional scrolls, pp. 1–16. Designs, Codes and Cryptography (2019).

  6. Chen Y., Vinck H.: Notes on Reed-Muller codes. arXiv preprint 0901, 2062 (2009).

  7. Chor B., Kushilevitz E., Goldreich O., Sudan M.: Private information retrieval. J. ACM 45(6), 965–981 (1998).

    Article  MathSciNet  Google Scholar 

  8. Costello D.J., Lin S.: Error Control Coding: Fundamentals and Applications, 2nd edn. Pearson, Prentice Hall, Upper Saddle River (2004).

    MATH  Google Scholar 

  9. Delsarte P., Goethals J.-M.: Unrestricted codes with the golay parameters are unique. Discret. Math. 12(3), 211–224 (1975).

    Article  MathSciNet  Google Scholar 

  10. Fazeli A, Vardy A., Yaakobi E.: Codes for distributed PIR with optimal storage overhead. In: 2015 IEEE International Symposium on Information Theory (ISIT), pp. 2852–2856 (2015).

  11. Fazeli A., Vardy A., Yaakobi E.: PIR with low storage overhead: Coding instead of replication. arXiv preprintarXiv:1505.06241 (2015).

  12. Frank-Fischer S.L., Guruswami V., Wootters M.: Locality via partially lifted codes. arXiv:1704.08627 (2017).

  13. Freij-Hollanti R., Gnilke O.W., Hollanti C., Horlemann-Trautmann A.-L., Karpuk D., Kubjas I.: t-private information retrieval schemes using transitive codes. IEEE Trans. Inf. Theory 65(4), 2107–2118 (2018).

    Article  MathSciNet  Google Scholar 

  14. Grassl M.: Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de (2007). Accessed 24 Jan 2019.

  15. Griesmer J.H.: A bound for error-correcting codes. IBM J. Res. Dev. 4(5), 532–542 (1960).

    Article  MathSciNet  Google Scholar 

  16. Kurz S.: LinCode – computer classification of linear codes. arXiv preprintarXiv:1912.09357 (2019).

  17. Lin S., Costello D.J.: Error Control Coding. Prentice Hall, Upper Saddle River (2004).

    MATH  Google Scholar 

  18. Lin H.-Y., Rosnes E.: Lengthening and extending binary private information retrieval codes. arXiv preprintarXiv:1707.03495, (2017).

  19. Lin S., Markowsky G.: On a class of one-step majority-logic decodable cyclic codes. IBM J. Res. Dev. 24(1), 56–63 (1980).

    Article  MathSciNet  Google Scholar 

  20. Lipmaa H., Skachek V.: Linear batch codes. In: Coding Theory and Applications, pp. 245–253. Springer, (2015).

  21. Massey J.L.: Threshold Decoding. MIT Press, Cambridge (1963).

    Book  Google Scholar 

  22. Pamies-Juarez L., Hollmann H. D., Oggier, F.: Locally repairable codes with multiple repair alternatives. In: Proc. IEEE Int. Symp. Inf. Theory, pp. 892–896, Istanbul, Turkey (2013).

  23. Pless V.: On the uniqueness of the Golay codes. J. Comb. Theory 5(3), 215–228 (1968).

    Article  MathSciNet  Google Scholar 

  24. Ramkumar V., Vajha M., Kumar P. V.: Determining the generalized hamming weight hierarchy of the binary projective Reed-Muller code. arXiv preprintarXiv:1806.02028, (2018).

  25. Rao S., Vardy A.: Lower bound on the redundancy of PIR codes. arXiv:1605.01869 (2016).

  26. Rawat A., Papailiopoulos D., Dimakis A., Vishwanath S.: Locality and availability in distributed storage. Proc. IEEE Int. Symp. Inf. Theory, pp. 681–685, Honolulu, HI (2014).

  27. Skachek, V.: Batch and PIR codes and their connections to locally repairable codes. In: Network Coding and Subspace Designs, pp. 427–442. Springer (2018).

  28. Vajha M., Ramkumar V., Kumar R.V.: Binary, shortened projective Reed Muller codes for coded private information retrieval. In: 2017 IEEE International Symposium on Information Theory (ISIT), pp. 2648–2652. IEEE, (2017).

  29. Wang A., Zhang Z., Liu M.: Achieving arbitrary locality and availability in binary codes. In: Proc. IEEE Int. Symp. on Inf. Theory, pp. 1866–1870, Hong Kong, (2015).

  30. Wootters M.: Linear codes with disjoint repair groups. unpublished mansucript, February (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Kurz.

Additional information

Communicated by C. J. Colbourn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Generator Matrices for the Stated Best Known Upper Bounds on P(s, k)

Appendix A: Generator Matrices for the Stated Best Known Upper Bounds on P(sk)

In this section we state generator matrix for the currently best known codes found by the ILP approach from Sect. 4, where we only consider the cases of dimension \(s\geqslant 2\) and demand \(k\geqslant 4\). Note that all codes are projective and except for the cases of P(6, 8), P(6, 10), P(6, 12), P(7, 12), P(9, 16) all generator matrices are systematic.

\(P(4,4)\leqslant 9\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 1 1 1 1 1\\ 0 1 0 0 0 1 0 1 1\\ 0 0 1 0 1 1 0 0 1\\ 0 0 0 1 0 0 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(4,6)\leqslant 12\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 1 1 0 1 0 1 0 1\\ 0 1 0 0 1 0 1 1 0 0 1 1\\ 0 0 1 0 1 0 0 0 1 1 1 1\\ 0 0 0 1 0 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(5,4)\leqslant 10\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 1 1 1 1 1\\ 0 1 0 0 0 1 0 1 0 1\\ 0 0 1 0 0 1 1 0 0 1\\ 0 0 0 1 0 0 1 0 1 1\\ 0 0 0 0 1 0 0 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(5,6)\leqslant 14\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 1 0 1 1 1 0 0 0 1\\ 0 1 0 0 0 1 1 0 0 1 0 0 1 1\\ 0 0 1 0 0 0 1 0 1 0 1 0 1 1\\ 0 0 0 1 0 0 0 1 1 0 0 1 1 1\\ 0 0 0 0 1 0 0 0 0 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(5,8)\leqslant 18\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1 0 1\\ 0 1 0 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1\\ 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1\\ 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1\\ 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(5,10)\leqslant 22\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1\\ 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1\\ 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1\\ 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1\\ 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(5,12)\leqslant 25\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1\\ 0 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1\\ 0 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1\\ 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1\\ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(5,14)\leqslant 28\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1\\ 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1\\ 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1\\ 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1\\ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(6,4)\leqslant 11\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 1 0 0 1 1\\ 0 1 0 0 0 0 1 1 1 0 0\\ 0 0 1 0 0 0 1 1 0 0 1\\ 0 0 0 1 0 0 0 1 1 0 1\\ 0 0 0 0 1 0 0 1 0 1 1\\ 0 0 0 0 0 1 0 0 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(6,6)\leqslant 15\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 1 1 1 1 1 0 1 1\\ 0 1 0 0 0 0 1 1 0 0 1 1 0 0 1\\ 0 0 1 0 0 0 0 1 0 1 0 0 1 1 1\\ 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0\\ 0 0 0 0 1 0 1 1 1 1 0 0 0 0 1\\ 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(6,8)\leqslant 19\)

$$\begin{aligned} \begin{pmatrix} 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1\\ 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0\\ 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1\\ 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1\\ 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1\\ 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0\\ \end{pmatrix} \end{aligned}$$

\(P(6,10)\leqslant 23\)

$$\begin{aligned} \begin{pmatrix} 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1\\ 0 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1\\ 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1\\ 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1\\ 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1\\ 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(6,12)\leqslant 27\)

$$\begin{aligned} \begin{pmatrix} 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1\\ 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1\\ 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1\\ 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1\\ 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1\\ 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(6,14)\leqslant 32\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1\\ 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1\\ 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1\\ 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1\\ 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1\\ 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(6,16)\leqslant 36\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1\\ 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1\\ 0 0 1 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1\\ 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1\\ 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1\\ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(7,6)\leqslant 16\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0\\ 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 1\\ 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1\\ 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1\\ 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0\\ 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1\\ 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(7,8)\leqslant 21\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1\\ 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1\\ 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1\\ 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1\\ 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1\\ 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1\\ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(7,10)\leqslant 26\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1\\ 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1\\ 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1\\ 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1\\ 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1\\ 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1\\ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(7,12)\leqslant 29\)

$$\begin{aligned} \begin{pmatrix} 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1\\ 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1\\ 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1\\ 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1\\ 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1\\ 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1\\ 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(7,14)\leqslant 34\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1\\ 0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1 1\\ 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 1 1\\ 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1\\ 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1\\ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1\\ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(7,16)\leqslant 39\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0\\ 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1\\ 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1\\ 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0\\ 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1\\ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1\\ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(7,32)\leqslant 71\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1\\ 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1\\ 0 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1\\ 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1\\ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1\\ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\\ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(8,6)\leqslant 18\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0\\ 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0\\ 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0\\ 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0\\ 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0\\ 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0\\ 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0\\ 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(8,8)\leqslant 23\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 0 0\\ 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 0\\ 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 0 0\\ 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 0 0\\ 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0\\ 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0\\ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0\\ 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(8,10)\leqslant 27\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1\\ 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1\\ 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1\\ 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 1\\ 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1\\ 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1\\ 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 1\\ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(8,12)\leqslant 33\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1\\ 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1\\ 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0 1 0 0 1\\ 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1\\ 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 0 0 1\\ 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1\\ 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1\\ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(8,14)\leqslant 38\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0\\ 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1\\ 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 0 0\\ 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0\\ 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0\\ 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 0 0 1\\ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1\\ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(8,16)\leqslant 42\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0\\ 0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 0\\ 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0\\ 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1\\ 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1\\ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1\\ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1\\ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(9,10)\leqslant 28\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1\\ 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1\\ 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1\\ 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 1\\ 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1\\ 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1\\ 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 1\\ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1\\ 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(9,12)\leqslant 37\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1\\ 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1 1\\ 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1\\ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 0 1\\ 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1\\ 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1\\ 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1\\ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1\\ 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(9,14)\leqslant 40\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1\\ 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1\\ 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1\\ 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 1\\ 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 1\\ 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1\\ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1\\ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1\\ 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(9,16)\leqslant 45\)

$$\begin{aligned} \begin{pmatrix} 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0\\ 1 1 1 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0\\ 0 1 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1\\ 0 0 1 1 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0\\ 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0\\ 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1\\ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1\\ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1\\ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(10,10)\leqslant 31\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0\\ 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0\\ 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 0 0\\ 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0\\ 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0\\ 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0\\ 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0\\ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0\\ 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0\\ 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(10,12)\leqslant 40\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0\\ 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1\\ 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0\\ 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0\\ 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1\\ 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0\\ 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 1 0 0\\ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1\\ 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1\\ 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

\(P(10,14)\leqslant 45\)

$$\begin{aligned} \begin{pmatrix} 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0\\ 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0\\ 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1\\ 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0\\ 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 1\\ 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0\\ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0\\ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1\\ 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1\\ 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1\\ \end{pmatrix} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurz, S., Yaakobi, E. PIR Codes with Short Block Length. Des. Codes Cryptogr. 89, 559–587 (2021). https://doi.org/10.1007/s10623-020-00828-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00828-6

Keywords

Mathematics Subject Classification

Navigation