Skip to main content
Log in

First-principles study of defect control in thin-film solar cell materials

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A solar cell is a photovoltaic device that converts solar radiation energy to electrical energy, which plays a leading role in alleviating global energy shortages and decreasing air pollution levels typical of conventional fossil fuels. To render solar cells more efficient, high visible-light absorption rates and excellent carrier transport properties are required to generate high carrier levels and high output voltage. Hence, the core material, i.e., the absorption layer, should have an appropriate direct band gap and be effectively doped by both p- and n-types with minimal carrier traps and recombination centers. Consequently, defect properties of absorbers are critical in determining solar cell efficiency. In this work, we review recent first-principles studies of defect properties and engineering in four representative thin-film solar cells, namely CdTe, Cu(In,Ga)Se2, Cu2ZnSnS4, and halide perovskites. The focal points include basic electronic and defect properties, existing problems, and possible solutions in engineering defect properties of those materials to optimize solar cell efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, Appl. Phys. Lett. 55, 1363 (1989).

    Article  ADS  Google Scholar 

  2. T. Saga, NPG Asia Mater. 2, 96 (2010).

    Article  Google Scholar 

  3. J. Oh, H. C. Yuan, and H. M. Branz, Nat. Nanotech. 7, 743 (2012).

    Article  ADS  Google Scholar 

  4. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Nature 517, 476 (2015).

    Article  ADS  Google Scholar 

  5. C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrćek, C. del Cañizo, and I. Tobias, Sol. Energy Mater. Sol. Cells 91, 238 (2007).

    Article  Google Scholar 

  6. B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, and L. Yin, Nat. Commun. 9, 1076 (2018).

    Article  ADS  Google Scholar 

  7. K. Durose, P. R. Edwards, and D. P. Halliday, J. Cryst. Growth 197, 733 (1999).

    Article  ADS  Google Scholar 

  8. D. L. Bätzner, A. Romeo, H. Zogg, R. Wendt, and A. N. Tiwari, Thin Solid Films 387, 151 (2001).

    Article  ADS  Google Scholar 

  9. U.S. Department of Energy. The History of Solar. https://www1.eere.energy.gov/solar/pdfs/solar_timeline.pdf.

  10. W. Shockley, and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).

    Article  ADS  Google Scholar 

  11. J. Sites, and J. Pan, Thin Solid Films 515, 6099 (2007).

    Article  ADS  Google Scholar 

  12. S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices (Wiley Interscience, Hoboken, 2007).

    Google Scholar 

  13. J. Ma, S. H. Wei, T. A. Gessert, and K. K. Chin, Phys. Rev. B 83, 245207 (2011).

    Article  ADS  Google Scholar 

  14. P. Hohenberg, and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  ADS  Google Scholar 

  15. W. Kohn, and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  ADS  Google Scholar 

  16. Y. Yan, and S. H. Wei, Phys. Stat. Sol. (b) 245, 641 (2008).

    Article  ADS  Google Scholar 

  17. J. Xiao, K. Yang, D. Guo, T. Shen, H. X. Deng, S. S. Li, J. W. Luo, and S. H. Wei, Phys. Rev. B 101, 165306 (2020), arXiv: 1910.08762.

    Article  ADS  Google Scholar 

  18. C. G. Van de Walle, and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).

    Article  ADS  Google Scholar 

  19. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014).

    Article  ADS  Google Scholar 

  20. A. Alkauskas, P. Deak, J. Neugebauer, A. Pasquarello, and C. G. Van de Walle. Overcoming Bipolar Doping Difficulty in Wide Gap Semiconductors. In: Advanced Calculations for Defects in Materials: Electronic Structure Methods (Wiley-VCH, Hoboken, 2011), 13: 213.

    Chapter  Google Scholar 

  21. J. H. Yang, W. K. Metzger, and S. H. Wei, Appl. Phys. Lett. 111, 042106 (2017), arXiv: 1701.06068.

    Article  ADS  Google Scholar 

  22. National Renewable Energy Laboratory. Best Research-Cell Efficiencies. 2020-06-20. https://www.nrel.gov/pv/assets/images/best-research-cell-efficiencies.png.

  23. J. H. Yang, J. S. Park, J. Kang, W. Metzger, T. Barnes, and S. H. Wei, Phys. Rev. B 90, 245202 (2014).

    Article  ADS  Google Scholar 

  24. J. H. Yang, W. J. Yin, J. S. Park, J. Ma, and S. H. Wei, Semicond. Sci. Technol. 31, 083002 (2016).

    Article  ADS  Google Scholar 

  25. J. H. Yang, J. S. Park, J. Kang, and S. H. Wei, Phys. Rev. B 91, 075202 (2015).

    Article  ADS  Google Scholar 

  26. D. Krasikov, A. Knizhnik, B. Potapkin, and T. Sommerer, Semicond. Sci. Technol. 28, 125019 (2013).

    Article  ADS  Google Scholar 

  27. D. Kuciauskas, A. Kanevce, P. Dippo, S. Seyedmohammadi, and R. Malik, IEEE J. Photovolt. 5, 366 (2015).

    Article  Google Scholar 

  28. Y. Xiao, Z. W. Wang, L. Shi, X. W. Jiang, S. S. Li, and L. W. Wang, Sci. China-Phys. Mech. Astron. 63, 277312 (2020).

    Article  ADS  Google Scholar 

  29. L. Shi, and L. W. Wang, Phys. Rev. Lett. 109, 245501 (2012).

    Article  ADS  Google Scholar 

  30. L. Shi, K. Xu, and L. W. Wang, Phys. Rev. B 91, 205315 (2015), arXiv: 1502.04559.

    Article  ADS  Google Scholar 

  31. J. H. Yang, L. Shi, L. W. Wang, and S. H. Wei, Sci. Rep. 6, 21712 (2016).

    Article  ADS  Google Scholar 

  32. J. Ma, D. Kuciauskas, D. Albin, R. Bhattacharya, M. Reese, T. Barnes, J. V. Li, T. Gessert, and S. H. Wei, Phys. Rev. Lett. 111, 067402 (2013).

    Article  ADS  Google Scholar 

  33. S. H. Wei, and S. B. Zhang, Phys. Rev. B 66, 155211 (2002).

    Article  ADS  Google Scholar 

  34. H. X. Deng, J. W. Luo, S. S. Li, and S. H. Wei, Phys. Rev. Lett. 117, 165901 (2016).

    Article  ADS  Google Scholar 

  35. J. Ma, and S. H. Wei, Phys. Rev. Lett. 110, 235901 (2013).

    Article  ADS  Google Scholar 

  36. T. C. Anthony, A. L. Fahrenbruch, M. G. Peters, and R. H. Bube, J. Appl. Phys. 57, 400 (1985).

    Article  ADS  Google Scholar 

  37. M. Zandian, A. C. Chen, D. D. Edwall, J. G. Pasko, and J. M. Arias, Appl. Phys. Lett. 71, 2815 (1997).

    Article  ADS  Google Scholar 

  38. J. H. Park, S. Farrell, R. Kodama, C. Blissett, X. Wang, E. Colegrove, W. K. Metzger, T. A. Gessert, and S. Sivananthan, J. Electron. Mater. 43, 2998 (2014).

    Article  ADS  Google Scholar 

  39. J. E. Hails, S. J. C. Irvine, D. J. Cole-Hamilton, J. Giess, M. R. Houlton, and A. Graham, J. Electron. Mater. 37, 1291 (2008).

    Article  ADS  Google Scholar 

  40. C. Kraft, A. Brömel, S. Schönherr, M. Hädrich, U. Reislöhner, P. Schley, G. Gobsch, R. Goldhahn, W. Wesch, and H. Metzner, Thin Solid Films 519, 7153 (2011).

    Article  ADS  Google Scholar 

  41. J. H. Yang, S. Chen, H. Xiang, X. G. Gong, and S. H. Wei, Phys. Rev. B 83, 235208 (2011).

    Article  ADS  Google Scholar 

  42. J. Yang, and S. H. Wei, Chin. Phys. B 28, 086106 (2019).

    Article  ADS  Google Scholar 

  43. M. A. Contreras, L. M. Mansfield, B. Egaas, J. Li, M. Romero, R. Noufi, E. Rudiger-Voigt, and W. Mannstadt, Prog. Photovolt-Res. Appl. 20, 843 (2012).

    Article  Google Scholar 

  44. A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Bätzner, F. J. Haug, M. Kälin, D. Rudmann, and A. N. Tiwari, Prog. Photovolt-Res. Appl. 12, 93 (2004).

    Article  Google Scholar 

  45. M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B. Egaas, and R. Noufi, Prog. Photovolt-Res. Appl. 13, 209 (2005).

    Article  Google Scholar 

  46. P. Reinhard, A. Chirila, P. Blosch, F. Pianezzi, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, IEEE J. Photovolt. 3, 572 (2013).

    Article  Google Scholar 

  47. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H. Sugimoto, IEEE J. Photovolt. 9, 1863 (2019).

    Article  Google Scholar 

  48. B. Huang, S. Chen, H. X. Deng, L. W. Wang, M. A. Contreras, R. Noufi, and S. H. Wei, IEEE J. Photovolt. 4, 477 (2014).

    Article  Google Scholar 

  49. R. N. Bhattacharya, W. Batchelor, J. F. Hiltner, and J. R. Sites, Appl. Phys. Lett. 75, 1431 (1999).

    Article  ADS  Google Scholar 

  50. P. K. Johnson, J. T. Heath, J. D. Cohen, K. Ramanathan, and J. R. Sites, Prog. Photovolt-Res. Appl. 13, 579 (2005).

    Article  Google Scholar 

  51. R. N. Bhattacharya, J. F. Hiltner, W. Batchelor, M. A. Contreras, R. N. Noufi, and J. R. Sites, Thin Solid Films 361–362, 396 (2000).

    Article  Google Scholar 

  52. S. H. Wei, S. B. Zhang, and A. Zunger, Appl. Phys. Lett. 72, 3199 (1998).

    Article  ADS  Google Scholar 

  53. S. B. Zhang, S. H. Wei, A. Zunger, and H. Katayama-Yoshida, Phys. Rev. B 57, 9642 (1998).

    Article  ADS  Google Scholar 

  54. S. Lany, and A. Zunger, Phys. Rev. Lett. 100, 016401 (2008).

    Article  ADS  Google Scholar 

  55. S. Chen, X. G. Gong, A. Walsh, and S. H. Wei, Phys. Rev. B 79, 165211 (2009).

    Article  ADS  Google Scholar 

  56. S. Chen, X. G. Gong, A. Walsh, and S. H. Wei, Appl. Phys. Lett. 94, 041903 (2009).

    Article  ADS  Google Scholar 

  57. S. C. Riha, B. A. Parkinson, and A. L. Prieto, J. Am. Chem. Soc. 131, 12054 (2009).

    Article  Google Scholar 

  58. A. Weber, S. Schmidt, D. Abou-Ras, P. Schubert-Bischoff, I. Denks, R. Mainz, and H. W. Schock, Appl. Phys. Lett. 95, 041904 (2009).

    Article  ADS  Google Scholar 

  59. H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Thin Solid Films 517, 2455 (2009).

    Article  ADS  Google Scholar 

  60. Y. Miyamoto, K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, Jpn. J. Appl. Phys. 47, 596 (2008).

    Article  ADS  Google Scholar 

  61. C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, J. Am. Chem. Soc. 131, 12554 (2009).

    Article  Google Scholar 

  62. S. Chen, X. G. Gong, A. Walsh, and S. H. Wei, Appl. Phys. Lett. 96, 021902 (2010).

    Article  ADS  Google Scholar 

  63. S. Chen, A. Walsh, X. G. Gong, and S. H. Wei, Adv. Mater. 25, 1522 (2013).

    Article  Google Scholar 

  64. J. M. Raulot, C. Domain, and J. F. Guillemoles, J. Phys. Chem. Solids 66, 2019 (2005).

    Article  ADS  Google Scholar 

  65. N. Nakayama, and K. Ito, Appl. Surf. Sci. 92, 171 (1996).

    Article  ADS  Google Scholar 

  66. T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, and H. Ogawa, J. Phys. Chem. Solids 66, 1978 (2005).

    Article  ADS  Google Scholar 

  67. J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, Adv. Mater. 26, 7427 (2014).

    Article  Google Scholar 

  68. K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, Sol. Energy Mater. Sol. Cells 93, 583 (2009).

    Article  Google Scholar 

  69. A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H. W. Schock, R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, and A. Kirbs, Thin Solid Films 517, 2511 (2009).

    Article  ADS  Google Scholar 

  70. L. Y. Yeh, and K. W. Cheng, Thin Solid Films 558, 289 (2014).

    Article  ADS  Google Scholar 

  71. T. Sasamura, T. Osaki, T. Kameyama, T. Shibayama, A. Kudo, S. Kuwabata, and T. Torimoto, Chem. Lett. 41, 1009 (2012).

    Article  Google Scholar 

  72. K. Ito, and T. Nakazawa, Jpn. J. Appl. Phys. 27, 2094 (1988).

    Article  ADS  Google Scholar 

  73. J. Guo, W. H. Zhou, Y. L. Pei, Q. W. Tian, D. X. Kou, Z. J. Zhou, Y. N. Meng, and S. X. Wu, Sol. Energy Mater. Sol. Cells 155, 209 (2016).

    Article  Google Scholar 

  74. S. Wagner, and P. M. Bridenbaugh, J. Cryst. Growth 39, 151 (1977).

    Article  ADS  Google Scholar 

  75. Z. K. Yuan, S. Chen, H. Xiang, X. G. Gong, A. Walsh, J. S. Park, I. Repins, and S. H. Wei, Adv. Funct. Mater. 25, 6733 (2015).

    Article  Google Scholar 

  76. M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).

    Article  ADS  Google Scholar 

  77. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature 499, 316 (2013).

    Article  ADS  Google Scholar 

  78. M. D. McGehee, Nat. Mater. 13, 845 (2014).

    Article  ADS  Google Scholar 

  79. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).

    Article  ADS  Google Scholar 

  80. I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, Nature 485, 486 (2012).

    Article  ADS  Google Scholar 

  81. M. Grätzel, Nat. Mater. 13, 838 (2014).

    Article  ADS  Google Scholar 

  82. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).

    Article  Google Scholar 

  83. W. J. Yin, T. Shi, and Y. Yan, Adv. Mater. 26, 4653 (2014).

    Article  Google Scholar 

  84. W. J. Yin, J. H. Yang, J. Kang, Y. Yan, and S. H. Wei, J. Mater. Chem. A 3, 8926 (2015).

    Article  Google Scholar 

  85. S. Gholipour, A. M. Ali, J. P. Correa-Baena, S. H. Turren-Cruz, F. Tajabadi, W. Tress, N. Taghavinia, M. Grätzel, A. Abate, F. De Angelis, C. A. Gaggioli, E. Mosconi, A. Hagfeldt, and M. Saliba, Adv. Mater. 29, 1702005 (2017).

    Article  Google Scholar 

  86. S. H. Wei, and A. Zunger, Phys. Rev. B 55, 13605 (1997).

    Article  ADS  Google Scholar 

  87. W. J. Yin, T. Shi, and Y. Yan, Appl. Phys. Lett. 104, 063903 (2014).

    Article  ADS  Google Scholar 

  88. A. Walsh, D. J. Payne, R. G. Egdell, and G. W. Watson, Chem. Soc. Rev. 40, 4455 (2011).

    Article  Google Scholar 

  89. W. Gao, X. Gao, T. A. Abtew, Y. Y. Sun, S. Zhang, and P. Zhang, Phys. Rev. B 93, 085202 (2016).

    Article  ADS  Google Scholar 

  90. Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu, Y. Gao, and J. Huang, Appl. Phys. Lett. 105, 163508 (2014).

    Article  ADS  Google Scholar 

  91. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano Lett. 13, 1764 (2013).

    Article  ADS  Google Scholar 

  92. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, Science 345, 295 (2014).

    Article  ADS  Google Scholar 

  93. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, Nano Lett. 14, 3608 (2014).

    Article  ADS  Google Scholar 

  94. S. A. Kulkarni, T. Baikie, P. P. Boix, N. Yantara, N. Mathews, and S. Mhaisalkar, J. Mater. Chem. A 2, 9221 (2014).

    Article  Google Scholar 

  95. B. Suarez, V. Gonzalez-Pedro, T. S. Ripolles, R. S. Sanchez, L. Otero, and I. Mora-Sero, J. Phys. Chem. Lett. 5, 1628 (2014).

    Article  Google Scholar 

  96. E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, and D. Cahen, J. Phys. Chem. Lett. 5, 429 (2014).

    Article  Google Scholar 

  97. W. J. Yin, Y. Yan, and S. H. Wei, J. Phys. Chem. Lett. 5, 3625 (2014).

    Article  Google Scholar 

  98. Y. Zhao, and K. Zhu, J. Am. Chem. Soc. 136, 12241 (2014).

    Article  Google Scholar 

  99. J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, and S. Yang, Nanoscale 5, 3245 (2013).

    Article  ADS  Google Scholar 

  100. R. Wang, X. Zhang, J. He, C. Ma, L. Xu, P. Sheng, and F. Huang, J. Alloys Compd. 695, 555 (2017).

    Article  Google Scholar 

  101. A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, J. Phys. Chem. Lett. 7, 295 (2016).

    Article  Google Scholar 

  102. M. A. Haque, J. Li, A. L. Abdelhady, M. I. Saidaminov, D. Baran, O. M. Bakr, S. Wei, and T. Wu, Adv. Opt. Mater. 7, 1900865 (2019).

    Article  Google Scholar 

  103. J. L. Li, J. Yang, T. Wu, and S. H. Wei, J. Mater. Chem. C 7, 4230 (2019).

    Article  Google Scholar 

  104. D. J. Chadi, and K. J. Chang, Phys. Rev. Lett. 61, 873 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Huai Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, HX., Cao, R. & Wei, SH. First-principles study of defect control in thin-film solar cell materials. Sci. China Phys. Mech. Astron. 64, 237301 (2021). https://doi.org/10.1007/s11433-020-1634-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1634-4

Navigation