Skip to main content
Log in

Nondegeneracy of Ground States and Multiple Semiclassical Solutions of the Hartree Equation for General Dimensions

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We study nondegeneracy of ground states of the Hartree equation

$$ -\Delta u+u=(I_{2}*u^2)u\quad \text{ in } {\mathbb {R}}^n $$

where \(n=3,4,5\) and \(I_2\) is the Newton potential. As an application of the nondegeneracy result, we use a Lyapunov–Schmidt reduction argument to construct multiple semiclassical solutions to the following Hartree equation with an external potential

$$ -\varepsilon ^2\Delta u+u+V(x)u=\varepsilon ^{-2}(I_{2}*u^2)u\quad \text{ in } {\mathbb {R}}^n. $$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Figueiredo, G.M., Yang, M.: Existence of solutions for a nonlinear choquard equation with potential vanishing at infinity. Adv. Nonlinear Anal. 5(4), 331–345 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Alves, C.O., Gao, F., Squassina, M., Yang, M.: Singularly perturbed critical Choquard equations. J. Differ. Equ. 263(7), 3943–3988 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alves, C.O., Nóbrega, A.B., Yang, M.: Multi-bump solutions for Choquard equation with deepening potential well. Calc. Var. Partial Differ. Equ. 55(3), 1–28 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alves, C.O., Yang, M.: Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differ. Equ. 257(11), 4133–4164 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alves, C.O., Yang, M.: Multiplicity and concentration of solutions for a quasilinear Choquard equation. J. Math. Phys. 55(6), 061502 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosetti, A., Badiale, M.: Variational perturbative methods and bifurcation of bound states from the essential spectrum. Proc. R. Soc. Edinb. Sect. A Math. 128, 1131–1161 (1998). 1

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Rational Mech. Anal. 140(3), 285–300 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ambrosetti, A., Malchiodi, A., Secchi, S.: Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Rational Mech. Anal. 159(3), 253–271 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Amick, C.J., Toland, J.F.: Uniqueness and related analytic properties for the Benjamin-Ono equation–a nonlinear Neumann problem in the plane. Acta Math. 167(1–2), 107–126 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bahrami, M., Großardt, A., Donadi, S., Bassi, A.: The Schrödinger-Newton equation and its foundations. New J. Phys. 16(11), 115007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bott, R.: Nondegenerate critical manifolds. Ann. Math. 60, 248–267 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  12. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Rational Mech. Anal. 165(4), 295–316 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations, II. Calcul. Var. Partial Differ. Equ. 18(2), 207–219 (2003)

    Article  MATH  Google Scholar 

  14. Chang, K.-C.: Infinite-dimensional Morse theory and multiple solution problems, volume 6 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Boston, MA (1993)

  15. Chen, G.: Multiple semiclassical standing waves for fractional nonlinear Schrödinger equations. Nonlinearity 28(4), 927 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, G., Zheng, Y.: Concentration phenomenon for fractional nonlinear Schrödinger equations. Comm. Pure Appl. Anal. 13(6), 2359–2376 (2014)

    Article  MATH  Google Scholar 

  17. Cingolani, S., Clapp, M., Secchi, S.: Multiple solutions to a magnetic nonlinear Choquard equation. Zeitschrift für Angew. Math. Phys. 63(2), 233–248 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cingolani, S., Secchi, S.: Semiclassical analysis for pseudo-relativistic Hartree equations. J. Differ. Equ. 258(12), 4156–4179 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cingolani, S., Secchi, S., Squassina, M.: Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc. R. Soc. Edinb. Sect. A Math. 140(5), 973–1009 (2010). 10

    Article  MATH  Google Scholar 

  20. Cingolani, S., Tanaka, K.: Semi-classical states for the nonlinear Choquard equations: existence, multiplicity and concentration at a potential well. arXiv preprint arXiv:1708.02356 (2017)

  21. Dávila, J., del Pino, M., Dipierro, S., Valdinoci, E.: Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum. Anal. PDE 8(5), 1165–1235 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dávila, J., del Pino, M., Wei, J.: Concentrating standing waves for the fractional nonlinear Schrödinger equation. J. Differ. Equ. 256(2), 858–892 (2014)

    Article  MATH  Google Scholar 

  23. del Pino, M., Felmer, P.L.: Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal. 149(1), 245–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Diósi, L.: Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A 105(4), 199–202 (1984)

    Article  Google Scholar 

  25. Frank, R.L., Lenzmann, E.: Uniqueness of non-linear ground states for fractional Laplacians in \({\mathbb{R}}\). Acta Math. 210(2), 261–318 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Frank, R.L., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math. 69(9), 1671–1726 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fröhlich, H.: Theory of electrical breakdown in ionic crytal. Proc. R. Soc. Ser. A 160(901), 230–241 (1937)

    Google Scholar 

  28. Jones, K.R.W.: Gravitational self-energy as the litmus of reality. Mod. Phys. Lett. A 10(08), 657–667 (1995)

    Article  Google Scholar 

  29. Lenzmann, E.: Uniqueness of ground states for pseudorelativistic Hartree equations. Anal. PDE 2(1), 1–27 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57(2), 93–105 (1976/77)

  31. Lieb, E.H., Loss, M.: Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2001)

  32. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. the limit case, part I. Rev. Mat. Iber. 1(1), 145–201 (1985)

    Article  MATH  Google Scholar 

  33. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. the limit case, part II. Rev. Mat. Iber. 1(2), 45–121 (1985)

    Article  MATH  Google Scholar 

  34. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Rational Mech. Anal. 195(2), 455–467 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Macrì, M., Nolasco, M.: Stationary solutions for the non-linear Hartree equation with a slowly varying potential. Nonlinear Differ. Equ. Appl. NoDEA 16(6), 681–715 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Moroz, I.M., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger-Newton equations. Classical Quantum Gravity 15(9), 2733–2742 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Moroz, V., Van Schaftingen, J.: Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials. Calcul. Var. Partial Differ. Equ. 37(1), 1 (2010)

    Article  MATH  Google Scholar 

  38. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265(2), 153–184 (2013). 7

    Article  MathSciNet  MATH  Google Scholar 

  39. Moroz, V., Van Schaftingen, J.: Nonexistence and optimal decay of supersolutions to choquard equations in exterior domains. J. Differ. Equ. 254(8), 3089–3145 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Moroz, V., Van Schaftingen, J.: Semi-classical states for the Choquard equations. Calc. Var. Partial Differ. Equ. 52(1–2), 199–235 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nolasco, M.: Breathing modes for the Schrödinger-Poisson system with a multiple-well external potential. Commun. Pure Appl. Anal. 9(5), 1411–1419 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pekar, S.: Untersuchung über die Elekronentheorie der Kristalle. Akedemie Verlag, Berlin (1954)

    Book  MATH  Google Scholar 

  43. Penrose, R.: On gravity’s role in quantum state reduction. Gener. Relat. Grav. 28(5), 581–600 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Penrose, R.: Quantum computation, entanglement and state reduction. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 356(1743), 1927–1939 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1975)

    MATH  Google Scholar 

  46. Reed, M., Simon, B.: Methods of modern mathematical physics. II. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1978)

    MATH  Google Scholar 

  47. Secchi, S.: A note on Schrödinger-Newton systems with decaying electric potential. Nonlinear Anal. Theory Methods Appl. 72(9–10), 3842–3856 (2010)

    Article  MATH  Google Scholar 

  48. Simon, B.: Harmonic Analysis. American Mathematical Society, Providence (2015)

    Book  MATH  Google Scholar 

  49. Tod, P., Moroz, I.M.: An analytical approach to the Schrödinger-Newton equations. Nonlinearity 12(2), 201–216 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, T., Yi, T.: Uniqueness of positive solutions of the choquard type equations. Appl. Anal. 96(3), 409–417 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wei, J., Winter, M.: Strongly interacting bumps for the Schrödinger-Newton equations. J. Math. Phys. 50(1), 012905 (2009). 22p

    Article  MathSciNet  MATH  Google Scholar 

  52. Weinstein, M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  53. Xiang, C.-L.: Uniqueness and nondegeneracy of ground states for choquard equations in three dimensions. Calc. Var. Partial Differ. Equ. 55(6), 134 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yang, M., Ding, Y.: Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part. Commun. Pure Appl. Anal. 12(2), 771–783 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yang, M., Wei, Y.: Existence and multiplicity of solutions for nonlinear Schrödinger equations with magnetic field and Hartree type nonlinearities. J. Math. Anal. Appl. 403(2), 680–694 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is indebted to Minbo Yang for many useful discussions on Choquard equation. This work is supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY18A010023), NSFC (No.11771386) and First Class Discipline of Zhejiang - A (Zhejiang University of Finance and Economics- Statistics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyuan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G. Nondegeneracy of Ground States and Multiple Semiclassical Solutions of the Hartree Equation for General Dimensions. Results Math 76, 34 (2021). https://doi.org/10.1007/s00025-020-01332-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-020-01332-y

Keywords

Mathematics Subject Classification

Navigation