Skip to main content

Advertisement

Log in

Neuroprotective Effects of Heat-Killed Lactobacillus plantarum 200655 Isolated from Kimchi Against Oxidative Stress

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Oxidative stress plays an important role in exacerbating neurodegenerative diseases, such as Alzheimer's disease, Parkinson’s disease, and Huntington’s disease. In a previous study, Lactobacillus plantarum 200655 was shown to possess probiotic and antioxidant potential. The current study aimed to evaluate the neuroprotective effects of heat-killed L. plantarum 200655. We incubated intestinal cells (HT-29) with heat-killed L. plantarum 200655 in a conditioned medium (CM) and found that the brain-derived neurotrophic factor (BDNF) mRNA level was elevated in the HT-29 cells and the CM contained high concentrations of BDNF. The CM protected neuroblastoma cells (SH-SY5Y) from hydrogen peroxide (H2O2)-induced toxicity. Moreover, the CM increased BDNF and tyrosine hydroxylase (TH) mRNA expression and significantly reduced the apoptosis-related Bax/Bcl-2 ratio in H2O2-treated SH-SY5Y cells. At the protein level, the CM resulted in downregulation of caspase-3. These results indicate that L. plantarum 200655 might be used as a prophylactic functional ingredient to prevent neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

Abbreviations

BDNF:

Brain-derived neurotrophic factor

Bcl-2:

B-cell lymphoma

Bax:

Bcl-2-associated X protein

TH:

Tyrosine hydroxylase

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

References

  1. Nirmaladevi D, Venkataramana M, Chandranayaka S, Ramesha A, Jameel NM, Srinivas C (2014) Neuroprotective effects of Bikaverin on H2O2-induced oxidative stress mediated neuronal damage in SH-SY5Y cell line. Cell Mol Neurobiol 34:973–985. https://doi.org/10.1007/s10571-014-0073-6

    Article  CAS  PubMed  Google Scholar 

  2. Park JE, Lee JY, Yeom Z, Heo DH, Lim YH (2017) Neuroprotective effect of Ruminococcus albus on oxidatively stressed SH-SY5Y cells and animals. Sci Rep 7:14520. https://doi.org/10.1038/s41598-017-15163-51

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang L, Yu H, Sun Y, Lin X, Chen B, Tan C, Cao G, Wang Z (2007) Protective effects of salidroside on hydrogen peroxide induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur J Pharmacol 564:18–25. https://doi.org/10.1016/j.ejphar.2007.01.089

    Article  CAS  PubMed  Google Scholar 

  4. Ng F, Berk M, Dean O, Bush AI (2008) Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychoph 11:851–876. https://doi.org/10.1017/S1461145707008401

    Article  CAS  Google Scholar 

  5. Hu XL, Niu YX, Zhang Q, Tian X, Gao LY, Guo LP, Meng WH, Zhao QC (2015) Neuroprotective effects of Kukoamine B against hydrogen peroxide-induced apoptosis and potential mechanisms in SH-SY5Y cells. Environ Toxicol Pharmacol 40:230–240. https://doi.org/10.1016/j.etap.2015.06.017

    Article  CAS  PubMed  Google Scholar 

  6. Sherman MP, Zaghouani H, Niklas V (2014) Gut microbiota, the immune system, and diet influence the neonatal gut-brain axis. Pediatr Res 77:127–135. https://doi.org/10.1038/pr.2014.161

    Article  PubMed  Google Scholar 

  7. Foster JA, McVey Neufeld KA (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312. https://doi.org/10.1016/j.tins.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  8. Lach G, Schellekens H, Dinan TG, Cryan JF (2017) Anxiety, depression, and the microbiome: a role for gut peptides. Neurotherapeutics 15:36–59. https://doi.org/10.1007/s13311-017-0585-0

    Article  CAS  PubMed Central  Google Scholar 

  9. FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. World Health Organization and Food and Agriculture Organization of the United Nations, London Ontario, Canada

  10. Wang Y, Liu Y, Kirpich I, Ma Z, Wang C, Zhang M, Suttles J, McClain C, Feng W (2013) Lactobacillus rhamnosus GG reduces hepatic TNF-a production and inflammation in chronic alcohol induced liver injury. J Nutr Biochem 24:1609–1615. https://doi.org/10.1016/j.jnutbio.2013.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Asan-Ozusaglam M, Glunyakti A (2019) Lactobacillus fermentum strains from human breast milk with probiotic properties and cholesterol-lowering effects. Food Sci Biotechnol 28:501–509. https://doi.org/10.1007/s10068-018-0494-y

    Article  CAS  PubMed  Google Scholar 

  12. Han KJ, Lee NK, Park H, Paik HD (2015) Anticancer and anti-inflammatory activity of probiotic Lactococcus lactis NK34. J Microbiol Biotechn 25:1697–1701. https://doi.org/10.4014/jmb.1503.03033

    Article  Google Scholar 

  13. Lee NK, Kim SY, Han KJ, Eom SJ, Paik HD (2014) Probiotic potential of Lactobacillus strains with anti-allergic effects from kimchi for yogurt starters. LWT-Food Sci Technol 58:130–134. https://doi.org/10.1016/j.lwt.2014.02.028

    Article  CAS  Google Scholar 

  14. Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: A novel class of psychotropic. Biol Psychiatry 74:720–726. https://doi.org/10.1016/j.biopsych.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  15. Liu YW, Liong MT, Tsai YC (2018) New perspectives of Lactobacillus plantarum as a probiotic: the gut-heart-brain axis. J Microbiol 56:601–613. https://doi.org/10.1007/s12275-018-8079-2

    Article  PubMed  Google Scholar 

  16. Jung IH, Jung MA, Kim EJ, Han MJ, Kim DH (2012) Lactobacillus pentosus var. plantarum C29 protects scopolamine-induced memory deficit in mice. J Appl Microbiol 113:1498–1506. https://doi.org/10.1111/j.1365-2672.2012.05437.x

    Article  CAS  PubMed  Google Scholar 

  17. Coelho R, Viola TW, Walss-Bass C, Brietzke E, Grassi-Oliveira R (2014) Childhood maltreatment and inflammatory markers: a systematic review. Acta Psychiatr Scand 129:180–192. https://doi.org/10.1111/acps.12217

    Article  CAS  PubMed  Google Scholar 

  18. Piqué N, Berlanga M, Miñana-Galbis D (2019) Health benefits of heat-killed (tyndallized) probiotics: an overview. Int J Mol Sci 20:2534. https://doi.org/10.3390/ijms20102534

    Article  CAS  PubMed Central  Google Scholar 

  19. Arai S, Iwabuchi N, Takahashi S, Xiao JZ, Abe F, Hachimura S (2018) Orally administered heat-killed Lactobacillus paracasei MCC1849 enhances antigen-specific IgA secretion and induces follicular helper T cells in mice. PLoS ONE 13:e0199018. https://doi.org/10.1371/journal.pone.0199018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jang HJ, Song MW, Lee NK, Paik HD (2018) Antioxidant effects of live and heat-killed probiotic Lactobacillus plantarum Ln1 isolated from kimchi. J Food Sci Technol 55:3174–3180. https://doi.org/10.1007/s13197-018-3245-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiao SD, Zhang DZ, Lu H, Jiang SH, Liu HY, Wang GS, Xu GM, Zhang ZB, Lin GJ, Wang GL (2003) Multicenter, randomized, controlled trial of heat-killed Lactobacillus acidophilus LB in patients with chronic diarrhea. Adv Ther 20:253–260. https://doi.org/10.1007/BF02849854.

  22. Yang SJ, Lee JE, Lim SM, Kim YJ, Lee NK, Paik HD (2019) Antioxidant and immune-enhancing effects of probiotic Lactobacillus plantarum 200655 isolated from kimchi. Food Sci Biotechnol 28:491–499. https://doi.org/10.1007/s10068-018-0473-3

    Article  CAS  PubMed  Google Scholar 

  23. Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131. https://doi.org/10.1038/nprot.2008.75

    Article  CAS  PubMed  Google Scholar 

  24. Pardillo-Díaz R, Carrascal L, Muñoz MF, Ayala A, Nunez-Abades P (2016) Time and dose dependent effects of oxidative stress induced by cumene hydroperoxide in neuronal excitability of rat motor cortex neurons. Neurotoxicology 53:201–214. https://doi.org/10.1016/j.neuro.2016.02.005

    Article  CAS  PubMed  Google Scholar 

  25. Tobólska S, Terpiłowska S, Jaroszewski J, Siwicki AK (2018) Influence of inosine pranobex on cell viability in normal fibroblasts and liver cancer cells. J Vet Res 62:215–220. https://doi.org/10.2478/jvetres-2018-0031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng R, Xu T, Zhang Y, Wang F, Zhao L, Jiang Y, He F (2019) Lactobacillus rhamnosus GG and Bifidobacterium bifidum TMC3115 can affect development of hippocampal neurons cultured in vitro in a strain-dependent manner. Probiotics Antimicro 12:589–599. https://doi.org/10.1007/s12602-019-09571-4

    Article  CAS  Google Scholar 

  27. Cheon MJ, Lim SM, Lee NK, Paik HD (2020) Probiotic properties and neuroprotective effects of Lactobacillus buchneri KU200793 isolated from Korean fermented foods. Int J Mol Sci 21:1227. https://doi.org/10.3390/ijms21041227

    Article  CAS  PubMed Central  Google Scholar 

  28. Chun HS, Gibson GE, DeGiorgio LA, Zhang H, Kidd VJ, Son JH (2001) Dopaminergic cell death induced by MPP+, oxidant and specific neurotoxicants shares the common molecular mechanism. J Neurochem 76:1010–1021. https://doi.org/10.1046/j.1471-4159.2001.00096.x

    Article  CAS  PubMed  Google Scholar 

  29. Xicoy H, Wieringa B, Martens GJM (2017) The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol Neurodegeneration 12:10. https://doi.org/10.1186/s13024-017-0149-0

    Article  CAS  Google Scholar 

  30. Liang Z, Shi F, Wang Y, Lu L, Zhang Z, Wang X, Wang X (2011) Neuroprotective effects of tenuigenin in a SH-SY5Y cell model with 6-OHDA-induced injury. Neurosci Lett 497:104–109. https://doi.org/10.1016/j.neulet.2011.04.041

    Article  CAS  PubMed  Google Scholar 

  31. Howells DW, Porritt MJ, Wong JY, Batchelor PE, Kalnins R, Hughes AJ, Donnan GA (2000) Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol 166:127–135. https://doi.org/10.1006/exnr.2000.7483

    Article  CAS  PubMed  Google Scholar 

  32. Song JH, Yu JT, Tan L (2015) Brain-derived neurotrophic factor in Alzheimer’s disease: risk, mechanisms, and therapy. Mol Neurobiol 52:1477–1493. https://doi.org/10.1007/s12035-014-8958-4

    Article  CAS  PubMed  Google Scholar 

  33. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125. https://doi.org/10.1016/j.pneurobio.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  34. Cerdo´ T, Die´guez E, Campoy C (2020) Impact of gut microbiota on neurogenesis and neurological diseases during infancy. Curr Opin Pharmacol 50:33–37. https://doi.org/10.1016/j.coph.2019.11.006

    Article  CAS  Google Scholar 

  35. Lommatzsch M, Zingler D, Schuhbaeck K, Schloetcke K, Zingler C, Schuff-Werner P, Virchow JC (2005) The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol Aging 26:115–123. https://doi.org/10.1016/j.neurobiolaging.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  36. Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508:1–12. https://doi.org/10.1016/j.abb.2010.12.017

    Article  CAS  PubMed  Google Scholar 

  37. Lee HJ, Lim SM, Kim DH (2018) Lactobacillus johnsonii CJLJ103 attenuates scopolamine-Induced memory impairment in mice by increasing BDNF expression and inhibiting NF-κB activation. J Microbiol Biotechn 28:1443–1446. https://doi.org/10.4014/jmb.1805.05025

    Article  CAS  Google Scholar 

  38. Woo JY, Gu W, Kim KA, Jang SE, Han MJ, Kim DH (2014) Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a d-galactose-induced accelerated aging mouse model. Anaerobe 27:22–26. https://doi.org/10.1016/j.anaerobe.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  39. Choi BS, Sapkota K, Kim S, Lee HJ, Choi HS, Kim SJ (2010) Antioxidant activity and protective effects of Tripterygium regelii extract on hydrogen peroxide-induced injury in human dopaminergic cells, SH-SY5Y. Neurochem Res 35:1269–1280. https://doi.org/10.1007/s11064-010-0185-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Suematsu N, Hosoda M, Fujimori K (2011) Protective effects of quercetin against hydrogen peroxide-induced apoptosis in human neuronal SH-SY5Y cells. Neurosci Lett 504:223–227. https://doi.org/10.1016/j.neulet.2011.09.028

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the Innovational Food Technology Development Program (#119009-3), funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Dong Paik.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheon, MJ., Lee, NK. & Paik, HD. Neuroprotective Effects of Heat-Killed Lactobacillus plantarum 200655 Isolated from Kimchi Against Oxidative Stress. Probiotics & Antimicro. Prot. 13, 788–795 (2021). https://doi.org/10.1007/s12602-020-09740-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09740-w

Keywords

Navigation