Skip to main content
Log in

Polystyrene-supported bromoderivative of 2-pyrrolidone: synthesis, characterization and application in microwave-assisted bromination reactions

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel, microwave safe and recyclable polymeric reagent was prepared by anchoring bromoderivative of 2-pyrrolidone in the polymer matrix of 3% tetraethyleneglycol diacrylate cross-linked polystyrene. The synthetic utility of the prepared polymeric reagent was demonstrated by the efficient bromination of unsaturated compounds, activated aromatic compounds and also for the α-bromination of ketones under microwave activation. Operational simplicity, moderate to excellent yield of the products, shorter reaction time and dry reaction medium are the foremost attraction of this protocol. Moreover, the synthesized functional polymer was stable under standard laboratory conditions and can be kept for several months without any significant loss of activity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8

Similar content being viewed by others

References

  1. Saikia I, Borah AJ, Phukan P (2016) Use of bromine and bromo-organic compounds in organic synthesis. Chem Rev 116(12):6837–7042. https://doi.org/10.1021/acs.chemrev.5b00400

    Article  CAS  PubMed  Google Scholar 

  2. Smith K (1995) Advances in organobromine chemistry II. Elsevier, New York, pp 4–64

    Google Scholar 

  3. Vanotterlo W (2004) Unforeseen formation of 2-bromo-3-hydroxybenzaldehyde by bromination of 3-hydroxybenzaldehyde. Tetrahedron Lett 45:5091–5094. https://doi.org/10.1016/s0040-4039(04)01010-x

    Article  CAS  Google Scholar 

  4. El-Hamshary H, Selim AI, Salahuddin NA, Mandour HS (2015) Clay–polymer nanocomposite-supported brominating agent. Clays Clay Miner 63(4):328–336. https://doi.org/10.1346/ccmn.2015.0630406

    Article  CAS  Google Scholar 

  5. Rogers JV, Price JA, Wendling MQS, Perry MR, Reid FM, Kiser RC, Graham JS (2011) An assessment of transcriptional changes in porcine skin exposed to bromine vapor. J Biochem Mol Toxicol 25(4):252–262. https://doi.org/10.1002/jbt.20383

    Article  CAS  PubMed  Google Scholar 

  6. Narender N, Krishna Mohan KV, Reddy RV, Srinivasu P, Kulkarni S, Raghavan K (2003) Liquid phase bromination of phenols using potassium bromide and hydrogen peroxide over zeolites. J Mol Catal A Chem 192(1–2):73–77. https://doi.org/10.1016/s1381-1169(02)00131-0

    Article  CAS  Google Scholar 

  7. Tajik H, Mohammadpoor-Baltork I, Albadi J (2007) Bromination of some aromatic compounds with potassium bromide in the presence of benzyltriphenylphosphonium peroxodisulfate. Synth Commun 37(2):323–328. https://doi.org/10.1080/00397910601033906

    Article  CAS  Google Scholar 

  8. Adibi H, Hajipour AR, Hashemi M (2007) A convenient and regioselective oxidative bromination of electron-rich aromatic rings using potassium bromide and benzyltriphenylphosphonium peroxymonosulfate under nearly neutral reaction conditions. Tetrahedron Lett 48(7):1255–1259. https://doi.org/10.1016/j.tetlet.2006.12.033

    Article  CAS  Google Scholar 

  9. Stropnik T, Bombek S, Kočevar M, Polanc S (2008) Regioselective bromination of activated aromatic substrates with a ZrBr 4/diazene mixture. Tetrahedron Lett 49(11):1729–1733. https://doi.org/10.1016/j.tetlet.2008.01.07

    Article  CAS  Google Scholar 

  10. Khansole SV, Patwari SB, Vibhute AY, Vibhute B (2009) Isoquinolinium bromochromate: an efficient and stable reagent for bromination of hydroxylated aromatic compounds and oxidation of alcohols. Chin Chem Lett 20(3):256–260. https://doi.org/10.1016/j.cclet.2008.11.015

    Article  CAS  Google Scholar 

  11. Borikar SP, Daniel T, Paul V (2009) An efficient, rapid, and regioselective bromination of anilines and phenols with 1-butyl-3-methylpyridinium tribromide as a new reagent/solvent under mild conditions. Tetrahedron Lett 50(9):1007–1009. https://doi.org/10.1016/j.tetlet.2008.12.053

    Article  CAS  Google Scholar 

  12. Zupan M, Segatin N (1994) Bromination of organic molecules with polymer-supported bromine complexes. Synth Commun 24(18):2617–2626. https://doi.org/10.1080/00397919408010574

    Article  CAS  Google Scholar 

  13. Lakouraj MM, Tajbakhsh M, Mokhtary M (2005) Poly(vinylpyrrolidone)-bromide complex; a mild and efficient reagent for selective bromination of alkenes and oxidation of alcohols. J Chem Res 8:481–483. https://doi.org/10.3184/030823405774663246

    Article  Google Scholar 

  14. Koshy EP, Zacharias J, Rajasekharan Pillai VN (2006) Poly (N-vinylpyrrolidone)-hydrotribromide: a new gel type resin for alcohol oxidation ad alkene dibromination. React Funct Polym 66(8):845–850. https://doi.org/10.1016/j.reactfunctpolym.2005.11.0

    Article  CAS  Google Scholar 

  15. Mokhtary M, Lakouraj MM (2011) Polyvinylpolypyrrolidone–bromine complex: mild and efficient polymeric reagent for bromination of activated aromatic compounds. Chin Chem Lett 22(1):13–17. https://doi.org/10.1016/j.cclet.2010.06.002

    Article  CAS  Google Scholar 

  16. Mokhtary M, Lakouraj MM (2012) Polyvinylpyrrolidone-bromine complex: An efficient polymeric reagent for selective preparation of benzyl bromides in the presence of hexamethyldisilane. Bull Chem Soc Ethiop 26(2):305–309. https://doi.org/10.4314/bcse.v26i2.14

    Article  CAS  Google Scholar 

  17. EI-Hamshary H, Selim AI, Salahuddin NA, Mandour HS, (2015) Clay–polymer nanocomposite-supported brominating agent. Clays Clay Miner 63(4):328–336. https://doi.org/10.1346/ccmn.2015.0630406

    Article  Google Scholar 

  18. Mokhtary M (2018) Recent advances in synthetic applications of polyvinyl pyrrolidone supported reagents and catalysts. Acad J Polym Sci 2(1):555580. https://doi.org/10.19080/AJOP.2018.02.555580

    Article  Google Scholar 

  19. Hodge P (1997) Polymer-supported organic reactions: What takes place in the beads? Chem Soc Rev 26:417–424. https://doi.org/10.1039/CS9972600417

    Article  CAS  Google Scholar 

  20. Trost BM, Warner RW (1982) Macrocyclization via an isomerization reaction at high concentrations promoted by palladium templates. J Am Chem Soc 104(22):6112–6114. https://doi.org/10.1021/ja00386a045

    Article  CAS  Google Scholar 

  21. Trost BM, Keinan E (1978) Steric steering with supported palladium catalysts. J Am Chem Soc 100(24):7779–7781. https://doi.org/10.1021/ja00492a084

    Article  CAS  Google Scholar 

  22. Shuttleworth SJ, Allin SM, Wilson RD, Nasturica D (2000) Functionalised polymers in organic chemistry; part 2. Synthesis 8:1035–1074. https://doi.org/10.1055/s-2000-6310

    Article  Google Scholar 

  23. McNamara CA, Dixon MJ, Bradley M (2002) Recoverable catalysts and reagents using recyclable polystyrene-based supports. Chem Rev 102:3275–3300. https://doi.org/10.1021/cr0103571

    Article  CAS  PubMed  Google Scholar 

  24. Hajjami M, Ghorbani-Choghamarani A, Norouzi M (2012) An efficient and facile procedure for synthesis of acetates from alcohols catalyzed by poly(4-vinylpyridinium tribromide). Chin J Catal 33(9–10):1661–1664. https://doi.org/10.1016/s1872-2067(11)60441-5

    Article  CAS  Google Scholar 

  25. Ghorbani-Choghamarani A, Azadi G (2011) Polyvinylpolypyrrolidone-supported hydrogen peroxide (PVP-H2O2), silica sulfuric acid and catalytic amounts of ammonium bromide as green, mild and metal-free oxidizing media for the efficient oxidation of alcohols and sulphides. J Iran Chem Soc 8(4):1082–1090. https://doi.org/10.1007/bf03246566

    Article  CAS  Google Scholar 

  26. Ghorbani-choghamarani A, Pourbahar N (2012) Polyvinylpolypyrrolidoniume tribromide as an efficient catalyst for the acetylation of alcohols and phenols. Chin J Catal 33(9–10):1470–1473. https://doi.org/10.1016/s1872-2067(11)60428-2

    Article  CAS  Google Scholar 

  27. Veerakumar P, Lu ZZ, Velayudham M, Lu KL, Rajagopal S (2010) Alumina supported nanoruthenium as efficient heterogeneous catalyst for the selective H2O2 oxidation ofaliphatic and aromatic sulfides to sulfoxides. J Mol Catal A Chem 332:128–137. https://doi.org/10.1016/j.molcata.2010.09.008

    Article  CAS  Google Scholar 

  28. Akelah A (1988) The use of functionalised polymers as polymeric reagents in solid phase organic synthesis—a review. React Polym Ion Exch Sorb 8(3):273–284. https://doi.org/10.1016/0167-6989(88)90303-0

    Article  CAS  Google Scholar 

  29. Takemoto K, Inaki Y, Ottenbrite RM (1987) Functional monomers and polymers. Dekker, New York, pp 1–100

    Google Scholar 

  30. Thomas JM (1999) Design, synthesis, and in situ characterization of new solid catalysts. Angew Chem Int Ed 38(24):3588–3628. https://doi.org/10.1002/(sici)1521-3773(19991216)38:24%3c3588::aid-anie3588%3e3.0.co;2-4

    Article  CAS  Google Scholar 

  31. De la Hoz A, Loupy A (2013) Microwaves in organic synthesis, 3rd edn. Wiley, Weinheim

    Google Scholar 

  32. Jaśkowska J, Drabczyk A, Kułaga D, Zaręba P, Majka Z (2018) Solvent-free microwave-assisted synthesis of aripiprazole. Curr Chem Lett 7(3):81–86. https://doi.org/10.5267/j.ccl.2018.08.002

    Article  Google Scholar 

  33. Ramírez JR, Caballero R, Guerra J, Ruiz-Carretero A, Sánchez-Migallón A, de la Hoz A (2015) Solvent-free microwave-assisted synthesis of 2, 5-dimethoxyphenylaminotriazines. ACS Sustain Chem Eng 3(12):3405–3411. https://doi.org/10.1021/acssuschemeng.5b0113

    Article  Google Scholar 

  34. Kamil F, Abid Hubeatir K, Shamel M, Al-Amiery AA (2015) Microwave-assisted solvent-free synthesis of new polyimine. Cogent Chem. https://doi.org/10.1080/23312009.2015.1075853

    Article  Google Scholar 

  35. Patel JP, Avalani JR, Raval DK (2013) Polymer supported sulphanilic acid: a highly efficient and recyclable green heterogeneous catalyst for the construction of 4,5-dihydropyrano[3,2-c]chromenes under solvent-free conditions. J Chem Sci 125(3):531–536. https://doi.org/10.1007/s12039-013-0408-8

    Article  CAS  Google Scholar 

  36. De la Hoz A, Díaz-Ortis A, Moreno A (2000) Langa F (2000) Cycloadditions under microwave irradiation conditions: methods and applications. Eur J Org Chem 22:3659–3673

    Google Scholar 

  37. Subodh G, Deepu V, Mohanan P, Sebastian MT (2009) Polystyrene/Sr2Ce2Ti5O15composites with low dielectric loss for microwave substrate applications. Polym Eng Sci 49(6):1218–1224. https://doi.org/10.1002/pen.21220

    Article  CAS  Google Scholar 

  38. O’Keefe S, Luscombe CK (2016) Microwave dielectric properties of polytetrafluoroethylene-polyacrylate composite films made via aerosol deposition. Polym Int 65(7):820–826. https://doi.org/10.1002/pi.5138

    Article  CAS  Google Scholar 

  39. Sherrington DC, Hodge P (1980) polymer supported reactions in organic synthesis. Wiley, New York

    Google Scholar 

  40. Arunan C, Pillai VNR (2003) 1,6-hexanediol diacrylate-crosslinked polystyrene: Preparation, characterization, and application in peptide synthesis. J Appl Polym Sci 87(8):1290–1296. https://doi.org/10.1002/app.11538

    Article  CAS  Google Scholar 

  41. Marvel CS, Porter PK (1941) Organic synthesis collection, vol 1, 2nd edn. Wiley, New York

    Google Scholar 

  42. Saju M. Sebastian (2013) Microwave assisted reactions using polyvinylpyrrolidone supported reagents. Dissertation, Mahatma Gandhi University, Kottayam, Kerala, India

  43. Renil M, Rajasekharan Pillai VN (1996) Synthesis, characterization and application of tetraethylene glycol diacrylate crosslinked polystyrene support for gel phase peptide synthesis. J Appl Polym Sci 61:1585–1594. https://doi.org/10.1002/(sici)1097-4628(19960829)61:9%3c1585::aid-app18%3e3.0.co;2-p

    Article  CAS  Google Scholar 

  44. Kumar KS, Rajasekharan Pillai VN (1999) Synthesis of peptide-N-alkylamides on a new PS-TTEGDA polymer support using photolabile anchoring group. Tetrahedron 55:10437–10446. https://doi.org/10.1016/s0040-4020(99)00569-4

    Article  Google Scholar 

  45. Zhao HC, Guo JL, Li JT, Gao LL, Bian CC (2010) Synthesis and thermal property of linear chloromethylated polystyrene. Adv Mater Res 150–151:1504–1507. https://doi.org/10.4028/www.scientific.net/amr

    Article  Google Scholar 

Download references

Acknowledgements

The financial assistance to Anjaly Mathew from University Grants Commission, Government of India, under minor research project, is gratefully acknowledged. The authors would like to thank SAIF STIC, CUSAT, Kerala, India, for characterization facilities.

Funding

This work was supported by the University Grants Commission Government of India, under Minor Research Project. [No. 2265-MRP /15-16/KLCA029/UGC-SWRO dated 25th April 2016].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AM, BM and EPK. The first draft of the manuscript was written by AM, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ebey P. Koshy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the Supplementary Information.

Supplementary Information 1 (DOCX 830 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, A., Mathew, B. & Koshy, E.P. Polystyrene-supported bromoderivative of 2-pyrrolidone: synthesis, characterization and application in microwave-assisted bromination reactions. Polym. Bull. 79, 905–920 (2022). https://doi.org/10.1007/s00289-021-03540-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03540-0

Keywords

Navigation