Skip to main content
Log in

Significance of Finite Element Models and Solid-State Phase Transformation on the Evaluation of Weld Induced Residual Stresses

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the present study, different finite element (FE) models were prepared to investigate weld induced residual stresses in thick multi-pass butt welded joint of SA516 Gr. 70 plates. Both 3D and 2D full geometry models and their axisymmetric half models were taken into consideration. The competence of these FE models on the accuracy of predicting residual stress distribution across the weld cross-section was investigated by comparing it with the experimental results. Blind hole drilling technique and deep hole drilling technique were employed to evaluate the surface and through-thickness residual stress distributions, respectively. In addition, the change in volume and yield strength of weld material due to austenitic phase transformation was also incorporated in the material modeling to observe the effect of solid-state phase transformation (SSPT) on the evaluation of residual stresses. Computed residual stresses obtained from different FE models indicate that the 3D FE models procured the best accuracy compared with the experimental results. On the other hand, 2D models can save a significant amount of computational time with reasonable accuracy. Incorporation of SSPT in the 3D FE full model exhibited a better agreement of predicted results with the experimental measurements.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. P.J. Withers, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 17, 366–375 (2001)

    Article  CAS  Google Scholar 

  2. P.K. Taraphdar, C. Pandey, M.M. Mahapatra, Arch. Civ. Mech. Eng. 20, 1–13 (2020)

    Article  Google Scholar 

  3. C. Heinze, C. Schwenk, M. Rethmeier, J. Constr. Steel Res. 72, 12–19 (2012)

    Article  Google Scholar 

  4. T. Kannengiesser, T. Boellinghaus, M. Neuhaus, Weld. World 50, 11–17 (2006)

    Article  Google Scholar 

  5. Z. Feng (ed.), Processes and Mechanisms of Welding Residual Stress and Distortion, 1st edn. (Woodhead Publishing Limited, Cambridge, 2005)

    Google Scholar 

  6. Y. Ueda, T. Yamakawa, Trans. Jpn. Weld. Soc. 2, 90–100 (1971)

    Google Scholar 

  7. D. Deng, Mater. Design 49, 1022–1033 (2013)

    Article  CAS  Google Scholar 

  8. C.K. Lee, S.P. Chiew, J. Jiang, J. Constr. Steel Res. 84, 94–104 (2013)

    Article  Google Scholar 

  9. B.Q. Chen, M. Hashemzadeh, C. GuedesSoares, Ships Offshore Struc. 13, 273–282 (2018)

    Article  Google Scholar 

  10. W. Jiang, W. Woo, Y. Wan, Y. Luo, X. Xie, S.T. Tu, J. Press. Vess. T. ASME 139, 1–10 (2017)

    Google Scholar 

  11. E. BorzabadiFarahani, B. SobhaniAragh, W.J. Mansur, P. I. Mech. Eng. L J. Mat. 233, 2352–2364 (2019)

    CAS  Google Scholar 

  12. D. Deng, H. Murakawa, Comput. Mater. Sci. 37, 269–277 (2006)

    Article  CAS  Google Scholar 

  13. L.E. Lindgren, Comput. Method. Appl. M. 195, 6710–6736 (2006)

    Article  Google Scholar 

  14. D. Yan, A. Wu, J. Silvanus, Q. Shi, Mater. Design 32, 2284–2291 (2011)

    Article  CAS  Google Scholar 

  15. H. Murakawa, , M. Sano and J. Wang, Trans. JWRI 41, 65–70 (2012)

    Google Scholar 

  16. D. Deng, H. Murakawa, W. Liang, Comput. Mater. Sci. 42, 234–244 (2008)

    Article  CAS  Google Scholar 

  17. C. Liu, J.X. Zhang, C.B. Xue, Fusion Eng. Des. 86, 288–295 (2011)

    Article  CAS  Google Scholar 

  18. I. Sattari-Far, M.R. Farahani, Int. J. Pres. Ves. Pip. 86, 723–731 (2009)

    Article  CAS  Google Scholar 

  19. A. Giri, M.M. Mahapatra, K. Sharma, P.K. Singh, Int. J. Steel Struct. 17, 65–75 (2017)

    Article  Google Scholar 

  20. S. Li, S. Ren, Y. Zhang, D. Deng, H. Murakawa, J. Mater. Process. Tech. 244, 240–252 (2017)

    Article  CAS  Google Scholar 

  21. A.H. Yaghi, T.H. Hyde, A.A. Becker, W. Sun, Int. J. Pres. Ves. Pip. 111112, 173–186 (2013)

    Article  Google Scholar 

  22. D. Dean, M. Hidekazu, Comput. Mater. Sci. 37, 209–219 (2006)

    Article  Google Scholar 

  23. I. Zhdanov, A. Gonchar, Automat. Weld. 319, 22–24 (1978)

    Google Scholar 

  24. E.M. Beaney, Measurement of Sub-Surface Stress, Report Rd/B/N4325, Central Electricity Generating Board (1978)

  25. M. Jesensky, J. Vargova, Svaracske Sprav. 31, 79–87 (1981)

    Google Scholar 

  26. E. Procter, E.M. Beaney, Advances in Surface Treatments: Technology Application Effects, International Guidebook On Residual Stresses, Vol. 14 (Oxford, Pergamon, 1987), pp. 165–198

    Article  Google Scholar 

  27. R.H. Leggatt, D.J. Smith, S.D. Smith, F. Faure, J. Strain Anal. Eng. 31, 177–186 (1996)

    Article  Google Scholar 

  28. A.H. Mahmoudi, S. Hossain, C.E. Truman, D.J. Smith, M.J. Pavier, Exp. Mech. 49, 595–604 (2009)

    Article  Google Scholar 

  29. S. Hossain, E.J. Kingston, C.E. Truman, D.J. Smith, Appl. Mech. Mater. 70, 291–296 (2011)

    Article  Google Scholar 

  30. P.K. Taraphdar, M.M. Mahapatra, A.K. Pradhan, P.K. Singh, K. Sharma, S. Kumar, P. I. Mech. Eng. L J. Mat. (2020)

  31. P.K. Taraphdar, J.G. Thakare, C. Pandey, M.M. Mahapatra, Mater. Lett. 277, 128347 (2020)

    Article  CAS  Google Scholar 

  32. M.G. Bateman, O.H. Miller, T.J. Palmer, C.E.P. Breen, E.J. Kingston, D.J. Smith, M.J. Pavier, Int. J. Mech. Sci. 47, 1718–1739 (2005)

    Article  Google Scholar 

  33. J. Goldak, A. Chakravarti, M. Bibby, Metall. Trans. B. 15B, 299–305 (1984)

    Article  Google Scholar 

  34. D. Gery, H. Long, P. Maropoulos, J. Mater. Process. Tech. 167, 393–401 (2005)

    Article  CAS  Google Scholar 

  35. L. Gannon, Y. Liu, N. Pegg, M. Smith, Mar. Struct. 23, 385–404 (2010)

    Article  Google Scholar 

  36. B. Brickstad, B.L. Josefson, Int. J. Pres. Ves. Pip. 75, 11–25 (1998)

    Article  CAS  Google Scholar 

  37. C. Lee, K. Chang, Appl. Therm. Eng. 4546, 33–41 (2012)

    Article  Google Scholar 

  38. S. Brown, H. Song, Weld. J. 71, 55–62 (1992)

    Google Scholar 

  39. A.K. Mondal, A. Lohit, P. Biswas, S. Bag, M. Das, P. I. Mech. Eng. B J. Eng. 232, 499–512 (2018)

    Article  Google Scholar 

  40. M.M. Mahapatra, G.L. Datta, B. Pradhan, N.R. Mandal, P. I. Mech. Eng. B J. Eng. 221, 397–407 (2007)

    Article  Google Scholar 

  41. J. Hansen, Numerical Modeling of Welding Induced Stresses (Technical University of Denmark, Lyngby, 2003)

    Google Scholar 

  42. A.H. Yaghi, T.H. Hyde, A.A. Becker, W. Sun, J. Strain Anal. Eng. 43, 275–293 (2008)

    Article  Google Scholar 

  43. C.H. Lee, K.H. Chang, Comput. Mater. Sci. 46, 1014–1022 (2009)

    Article  CAS  Google Scholar 

  44. W. Li, R. Yu, D. Huang, J. Wu, Y. Wang, T. Hu, J. Wang, J. Manuf. Process. 45, 460–471 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to BRNS, BARC-India, and IIT Bhubaneswar for providing experimental facilities along with financial assistance for the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taraphdar, P.K., Kumar, R., Pandey, C. et al. Significance of Finite Element Models and Solid-State Phase Transformation on the Evaluation of Weld Induced Residual Stresses. Met. Mater. Int. 27, 3478–3492 (2021). https://doi.org/10.1007/s12540-020-00921-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00921-4

Keywords

Navigation