Skip to main content
Log in

Synergistic Effect Between Cavitation Erosion and Corrosion for Friction Stir Processed NiAl Bronze in Artificial Seawater

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Herein, the friction stir processing (FSP) method was adopted to modify the microstructure of as-cast nickel aluminum bronze (NAB). The microhardness, cavitation erosion-corrosion mass loss, morphological damage and electrochemical tests were extensively examined. The results show that FSP can refine and uniform the microstructure of as-cast NAB alloy. FSP NAB alloy displays enhanced cavitation erosion resistance in distilled water and artificial seawater, as well as heightened sensitive to corrosive media in artificial seawater. Quantitative analysis of the synergistic effect between cavitation erosion and corrosion shows that pure cavitation erosion components contributions largest for as-cast NAB. In contrast, FSP NAB is greatly influenced by the synergistic effect component. The damaged surface shows that cavitation erosion mechanisms of as-cast NAB in distilled water and artificial seawater are similar, which is not the case for FSP NAB due to the synergistic effect between cavitation erosion and corrosion.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A.H. Tuthill, Mater. Perform. 26, 12–22 (1987)

    CAS  Google Scholar 

  2. A. Jahanafrooz, F. Hasan, G.W. Lorimer, N. Ridley, Metall. Trans. A 14, 1951–1956 (1983)

    Article  Google Scholar 

  3. B. Aktas, O. Usta, M. Atlar, Appl. Ocean Res. 94, 101868 (2020)

    Article  Google Scholar 

  4. M.S. Plesset, A. Prosperetti, Annu. Rev. Fluid Mech. 9, 145–185 (1977)

    Article  CAS  Google Scholar 

  5. M. Blume, R. Skoda, Wear 428429, 457–469 (2019)

    Article  Google Scholar 

  6. E.A. Culpan, G. Rose, Brit. Corros. J. 14, 160–166 (1979)

    Article  CAS  Google Scholar 

  7. Q.N. Song, Y.G. Zheng, D.R. Ni, Z.Y. Ma, Corros. Sci. 92, 95–103 (2015)

    Article  CAS  Google Scholar 

  8. M. Hazra, K.P. Balan, Eng. Fail. Anal. 70, 141–156 (2016)

    Article  CAS  Google Scholar 

  9. L.M. Zhang, A.L. Ma, H. Yu, A.J. Umoh, Y.G. Zheng, Tribol. Int. 136, 250–258 (2019)

    Article  CAS  Google Scholar 

  10. Q.N. Song, N. Xu, Y. Tong, C.M. Huang, S.Y. Sun, C.B. Xu, Y.F. Bao, Y.F. Jiang, Y.X. Qiao, Z.Y. Zhu, Z.B. Wang, Acta Metall. Sin. Engl. 32, 1470–1482 (2019)

    Article  CAS  Google Scholar 

  11. Q.N. Song, Y. Tong, N. Xu, S.Y. Sun, H.L. Li, Y.F. Bao, Y.F. Jiang, Z.B. Wang, Y.X. Qiao, Wear 450451, 203258 (2020)

    Article  Google Scholar 

  12. Z.B. Qin, Q. Zhang, Q. Luo, Z. Wu, B. Shen, L. Liu, W.B. Hu, Corros. Sci. 139, 255–266 (2018)

    Article  CAS  Google Scholar 

  13. Y.T. Lv, L.Q. Wang, Y.F. Han, X.Y. Xu, W.J. Lu, Mater. Sci. Eng. A 643, 17–24 (2015)

    Article  CAS  Google Scholar 

  14. Y.H. Zeng, F.F. Yang, Z.N. Chen, E.Y. Guo, M.Q. Gao, X.J. Wang, H.J. Kang, T.M. Wang, J. Mater. Sci. Technol. 61, 186–196 (2021)

    Article  Google Scholar 

  15. B.J. Zhao, Y.T. Lv, Y. Ding, L.Q. Wang, W.J. Lu, Mater. Charact. 144, 77–85 (2018)

    Article  CAS  Google Scholar 

  16. S. Hanke, A. Fischer, M. Beyer, J. dos Santos, Wear 273, 32–37 (2011)

    Article  CAS  Google Scholar 

  17. R.C. Barik, J.A. Wharton, R.J.K. Wood, K.S. Tan, K.R. Stokes, Wear 259, 230–242 (2005)

    Article  CAS  Google Scholar 

  18. K.-S. Park, S. Kim, J. Electrochem. Soc. 158, C335–C340 (2011)

    Article  CAS  Google Scholar 

  19. R. Cottam, V. Luzin, H. Moody, D. Edwards, A. Majumdar, Y.C. Wong, J. Wang, M. Brandt, Wear 317, 56–63 (2014)

    Article  CAS  Google Scholar 

  20. Q. Luo, Q. Zhang, Z.B. Qin, Z. Wu, B. Shen, L. Liu, W.B. Hu, J. Alloys Compd. 747, 861–868 (2018)

    Article  CAS  Google Scholar 

  21. A. Jafari, M.H. Alam, D. Dastan, S. Ziakhodadadian, Z.C. Shi, H. Garmestani, A.S. Weidenbach, Ş. Ţălu, J. Mater. Sci. Mater. Electron. 30, 21185–21198 (2019)

    Article  CAS  Google Scholar 

  22. R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50, 1–78 (2005)

    Article  Google Scholar 

  23. K. Oh-ishi, R. Mcnelley, Metall. Mater. Trans. A 35A, 2951–2961 (2004)

    Article  CAS  Google Scholar 

  24. R.B. Naik, K.V. Reddy, G.M. Reddy, R.A. Kumar, Fusion Eng. Des. 161, 111962 (2020)

    Article  CAS  Google Scholar 

  25. A. Moaref, A. Rabiezadeh, Trans. Nonferrous Met. Soc. 30, 972–981 (2020)

    Article  CAS  Google Scholar 

  26. Y.T. Lv, B. Nie, L.Q. Wang, H.Z. Cui, L. Li, R. Wang, F.Y. Lyu, Mater. Sci. Eng. A 771, 138577 (2020)

    Article  CAS  Google Scholar 

  27. D.R. Ni, B.L. Xiao, Z.Y. Ma, Y.X. Qiao, Y.G. Zheng, Corros. Sci. 52, 1610–1617 (2010)

    Article  CAS  Google Scholar 

  28. S. Thapliyal, D.K. Dwivedi, Tribol. Int. 97, 124–135 (2016)

    Article  CAS  Google Scholar 

  29. Q.N. Song, Y.G. Zheng, S.L. Jiang, D.R. Ni, Z.Y. Ma, Corrosion 69, 1111–1121 (2013)

    Article  CAS  Google Scholar 

  30. M. Liu, C.Y. Li, L. Liu, Y.J. Ye, D. Dastan, H. Garmestani, Mater. Sci. Technol. 36, 284–292 (2020)

    Article  CAS  Google Scholar 

  31. D1141-98 (Reapproved 2013), Standard Practice for the Preparation of Substitute Ocean Water (ASTM International, West Conshohocken, PA, 2013)

  32. F. Hasan, A. Jahanafrooz, G.W. Lorimer, N. Ridley, Metall. Trans. A 13, 1337–1345 (1982)

    Article  CAS  Google Scholar 

  33. L. Liu, Y.Y. Sheng, M. Liu, M. Dienwiebel, Z.C. Zhang, D. Dastan, Tribol. Int. 140, 105727 (2019)

    Article  CAS  Google Scholar 

  34. Q.N. Song, Y.G. Zheng, D.R. Ni, Z.Y. Ma, Corrosion 71, 606–614 (2015)

    Article  CAS  Google Scholar 

  35. H.X. Guo, B.T. Lu, J.L. Luo, Electrochim. Acta 51, 5341–5348 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Grant No. 51705125), the Natural Science Foundation of Hebei Province (Grant No. E2020402005), the Science and Technology Research Project of Hebei Higher Education Institutions (Grant No. QN2017030), and the Science and Technology Research and Development Program Projects of Handan Science and Technology Bureau (Grant No. 1521109072-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Lian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lian, Y. & Sun, Y. Synergistic Effect Between Cavitation Erosion and Corrosion for Friction Stir Processed NiAl Bronze in Artificial Seawater. Met. Mater. Int. 27, 5082–5094 (2021). https://doi.org/10.1007/s12540-020-00916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00916-1

Keywords

Navigation