Skip to main content
Log in

Littlewood–Paley theory for matrix-weighted function spaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We define the vector-valued, matrix-weighted function spaces \(\dot{F}^{\alpha q}_p(W)\) (homogeneous) and \(F^{\alpha q}_p(W)\) (inhomogeneous) on \({\mathbb {R}}^n\), for \(\alpha \in {\mathbb {R}}\), \(0<p<\infty \), \(0<q \le \infty \), with the matrix weight W belonging to the \(A_p\) class. For \(1<p<\infty \), we show that \(L^p(W) = \dot{F}^{0 2}_p(W)\), and, for \(k \in {\mathbb {N}}\), that \(F^{k 2}_p(W)\) coincides with the matrix-weighted Sobolev space \(L^p_k(W)\), thereby obtaining Littlewood-Paley characterizations of \(L^p(W)\) and \(L^p_k (W)\). We show that a vector-valued function belongs to \(\dot{F}^{\alpha q}_p(W)\) if and only if its wavelet or \(\varphi \)-transform coefficients belong to an associated sequence space \(\dot{f}^{\alpha q}_p(W)\). We also characterize these spaces in terms of reducing operators associated to W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaen, A.: Singular integral operators on matrix-weighted \(L^p\) spaces. Master’s Thesis, Aalborg University, Aalborg. Denmark 1–65 (2009). http://projekter.aau.dk/projekter/files/17607609/speciale.pdf

  2. Benedek, A., Calderón, A.-P., Panzone, R.: Convolution operators on Banach space valued functions. Proc. Natl. Acad. Sci. USA 48, 356–365 (1962)

    Article  MathSciNet  Google Scholar 

  3. Bényi, A., Torres, R.H.: The Discrete Calderón Reproducing Formula of Frazier and Jawerth, Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth, Contemporary Mathematics, vol. 693, pp. 79–107. American Mathematical Society, Providence (2017)

    MATH  Google Scholar 

  4. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer, Berlin (1976)

    MATH  Google Scholar 

  5. Calderón, A.-P.: Lebesgue spaces of differentiable functions and distributions. In: Proceedings of Symposium on Pure Mathematics, Vol. IV, American Mathematical Society, Providence, R.I., pp. 33–49 (1961)

  6. Christ, M., Goldberg, M.: Vector \(A_2\) weights and a Hardy–Littlewood maximal function. Trans. Am. Math. Soc. 353(5), 1995–2002 (2001)

    Article  Google Scholar 

  7. Coifman, R.R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Stud. Math. 51, 241–250 (1974)

    Article  MathSciNet  Google Scholar 

  8. Cruz-Uribe, D., Isralowitz, J., Moen, K.: Two weight bump conditions for matrix weights. Integral Equ. Opera. Theory 90(3), 31 (2018)

    Article  MathSciNet  Google Scholar 

  9. Cruz-Uribe, D., Isralowitz, J., Moen, K., Pott, S., Rivera-Ríos, I.P.: Weak endpoint bounds for matrix weights. arXiv:1905.06436

  10. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41(7), 909–996 (1988)

    Article  MathSciNet  Google Scholar 

  11. Fefferman, C., Stein, E.M.: \(H^{p}\) spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)

    Article  MathSciNet  Google Scholar 

  12. Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34(4), 777–799 (1985)

    Article  MathSciNet  Google Scholar 

  13. Frazier, M., Jawerth, B.: The \(\phi \)-Transform and Applications to Distribution Spaces. Function Spaces and Applications (Lund, 1986), Lecture Notes in Mathematics, vol. 1302, pp. 223–246. Springer, Berlin (1988)

    Google Scholar 

  14. Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93(1), 34–170 (1990)

    Article  MathSciNet  Google Scholar 

  15. Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley theory and the study of function spaces, CBMS Regional Conference Series in Mathematics, vol. 79, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1991)

  16. Frazier, M., Roudenko, S.: Matrix-weighted Besov spaces and conditions of \(A_p\) type for \(0<p\le 1\). Indiana Univ. Math. J. 53(5), 1225–1254 (2004)

    Article  MathSciNet  Google Scholar 

  17. Gillespie, T.A., Pott, S., Treil, S., Volberg, A.: Logarithmic growth for weighted Hilbert transforms and vector Hankel operators. J. Oper. Theory 52(1), 103–112 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Goldberg, M.: Matrix \(A_p\) weights via maximal functions. Pac. J. Math. 211(2), 201–220 (2003)

    Article  Google Scholar 

  19. Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education Inc., Upper Saddle River (2004)

    MATH  Google Scholar 

  20. Haroske, D.D., Skandera, P.: Embeddings of Doubling Weighted Besov Spaces, Function Spaces X, Banach Center Publicatons, pp. 105–119. Polish Academy of Sciences Institute of Mathematics, Warsaw (2014)

    MATH  Google Scholar 

  21. Hunt, R., Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Am. Math. Soc. 176, 227–251 (1973)

    Article  MathSciNet  Google Scholar 

  22. Isralowitz, J.: Matrix weighted Triebel-Lizorkin bounds: a simple stopping time proof. arXiv:1507.06700v1

  23. Isralowitz, J., Moen, K.: Matrix weighted Poincaré inequalities and applications to degenerate elliptic systems. Indiana Univ. Math. J. 68(5), 1327–1377 (2019)

    Article  MathSciNet  Google Scholar 

  24. Lemarié, P.G., Meyer, Y.: Ondelettes et bases hilbertiennes. Rev. Mat. Iberoamericana 2(1–2), 1–18 (1986)

    Article  MathSciNet  Google Scholar 

  25. Meyer, Y.: Principe d’incertitude, bases hilbertiennes et algèbres d’opérateurs. Séminaire Bourbaki, Vol. 1985/86. Astérisque 4(145–146), 209–223 (1987)

    Google Scholar 

  26. Meyer, Y.: Wavelets and Operators, Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992). (Translated from the 1990 French original by D. H. Salinger)

    Google Scholar 

  27. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    Article  MathSciNet  Google Scholar 

  28. Nazarov, F.L., Treil, S.R.: The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis. Algebra Analiz 8(5), 32–162 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Roudenko, S.: Matrix-weighted Besov spaces. Trans. Am. Math. Soc. 355(1), 273–314 (2003)

    Article  MathSciNet  Google Scholar 

  30. Roudenko, S.: Duality of matrix-weighted Besov spaces. Stud. Math. 160(2), 129–156 (2004)

    Article  MathSciNet  Google Scholar 

  31. Roudenko, S.A.: The theory of function spaces with matrix weights, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–Michigan State University (2002)

  32. Stein, E.M.: On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz. Trans. Am. Math. Soc. 88, 430–466 (1958)

    Article  MathSciNet  Google Scholar 

  33. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  34. Stein, E.M.: The development of square functions in the work of A. Zygmund. Bull. Am. Math. Soc. (N.S.) 7(2), 359–376 (1982)

    Article  MathSciNet  Google Scholar 

  35. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993). (With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III)

    Google Scholar 

  36. Treil, S., Volberg, A.: Wavelets and the angle between past and future. J. Funct. Anal. 143(2), 269–308 (1997)

    Article  MathSciNet  Google Scholar 

  37. Triebel, H.: Theory of Function Spaces, Monographs in Mathematics, vol. 78. Birkhäuser Verlag, Basel (1983)

    Book  Google Scholar 

  38. Volberg, A.: Matrix \(A_p\) weights via \(S\)-functions. J. Am. Math. Soc. 10(2), 445–466 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Fedor Nazarov, who provided us with the formulation and proof of Theorem 3.7. S.R. was partially supported by the NSF-DMS CAREER grant # 1151618/1929029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Roudenko.

Additional information

Communicated by Loukas Grafakos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frazier, M., Roudenko, S. Littlewood–Paley theory for matrix-weighted function spaces. Math. Ann. 380, 487–537 (2021). https://doi.org/10.1007/s00208-020-02088-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02088-0

Mathematics Subject Classification

Navigation