Skip to main content
Log in

([n-C4H9)4 N]3PMo2W9(Sn4+.xH2O)O39/TiO2): a new visible photocatalyst for photodegradation of DR16 characterization and optimization process by RSM

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Optimization of the photodegradation of direct red 16 (DR16) under visible light irradiation in the presence of new photocatalyst [n-C4H9)4 N]3PMo2W9(Sn4+.xH2O)O39/TiO2 (PMoWSn/TiO2) was investigated. PMoWSn/TiO2 with different ratios of PMoWSn to TiO2 (2, 11, and 20%) were synthesized by modified sol–gel hydrothermal method. Characterization of the prepared nanocatalysts was carried out by photoluminescence spectroscopy, X-ray diffraction, Fourier transform infrared, field emission scanning electron microscopy, Brunauer Emmett–Teller, and diffuse reflectance spectra. Factorial experimental design was applied to study the interaction effects of five operational variables including DR16 concentration, polyoxometalate content, catalyst loading, reaction time, and pH on the photodegradation process performance. By increasing the amount of PMoWSn, the recombination rate of electrons and holes was decreased and redshift to visible range was observed. Bandgap of the photocatalysts was evaluated from Tauc and Mott–Schottky plots. The efficient and suitable photocatalytic performance of photocatalyst can be attributed to the efficient separation of photo-generated electron–hole pairs and polarization resistance of the catalyst evaluated by Nyquist and Bode plots extracted from electrochemical impedance spectroscopy. The results showed that the photocatalytic activity of 20-PMoWSn/TiO2 was better than the other nanocatalysts. A central composite design based on response surface methodology was successfully used in optimization of the photodegradation of DR16. The optimum conditions were achieved at acidic pH (3), DR16 concentration of 20 mg/L, and polyoxometalate loading of 20 wt.%. Also this catalyst showed excellent reusability at least after four runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Tanaka, K. Padermpole, T. Hisanaga, Water Res. 34, 327 (2000)

    Article  CAS  Google Scholar 

  2. N. Puvaneswari, J. Muthukrishnan, P. Gunasekaran, Indian J. Exp. Biol. 44, 618 (2006)

    CAS  PubMed  Google Scholar 

  3. W. Maisang, A. Phuruangrat, S. Thongtem, S. Kaowphong, J. Kavinchan, T. Thontem, J. Iran. Chem. Soc. (2020). https://doi.org/10.1007/s13738-020-01904-3

    Article  Google Scholar 

  4. E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zangeneh, Mat. Sci. Semicon. Proc. 83, 115 (2018). https://doi.org/10.1016/j.mssp.2018.04.021

    Article  CAS  Google Scholar 

  5. A.H. Yangjeh, S. Feizpoor, J. Iran. Chem. Soc. 17, 351 (2020). https://doi.org/10.1007/s13738-019-01771-7

    Article  CAS  Google Scholar 

  6. V.K. Saharan, D.V. Pinjari, P.R. Gogate, A. Niruddha B. Pandit, Industrial Wastewater Treatment, Recycling and Reuse. (2014), Chapter 3 (Advanced Oxidation Technologies for Wastewater Treatment: An Overview) 141.

  7. N. Karimzadeh, M. Babamoradi, R. Azimirad, M. Khajeh, J. Electron. Mater. 47, 5452 (2018). https://doi.org/10.1007/s11664-018-6427-y

    Article  CAS  Google Scholar 

  8. Z. Shayegan, Ch. Lee, F. Haghighat, Chem. Eng. J. 334, 2408 (2018). https://doi.org/10.1016/j.cej.2017.09.153

    Article  CAS  Google Scholar 

  9. E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zanganeh, RSC. Adv. 6, 96554–96562 (2016). https://doi.org/10.1039/C6RA09897E

    Article  CAS  Google Scholar 

  10. L.O. Pereira, R.V. Lelo, G.C.M. Coelho, F. Magalhaes, J. Iran. Chem. Soc. 16, 2281 (2019)

    Article  CAS  Google Scholar 

  11. G. Liu, L. Wang, H.G. Yang, H.M. Cheng, G.Q. Lu, J. Mater. Chem. 20, 831 (2010). https://doi.org/10.1039/B909930A

    Article  Google Scholar 

  12. S. Ma, J. Mengn, J. Li, Y. Zhang, L. Ni, J. Membr. Sci. 453, 221 (2014). https://doi.org/10.1016/j.memsci.2013.11.021

    Article  CAS  Google Scholar 

  13. V. Singh, Y. Zhang, L. Yang, P. Ma, D. Zhang, Ch. Zhang, L. Yu, J. Niu ID, J. Wang (2017) Molecules; 22:1351. https://doi.org/10.3390/molecules22081351.

  14. P. Pazhooh, R. Khoshnavazi, L. Bahrami, E. Naseri, J. Iran. Chem. Soc. 15, 1775 (2018)

    Article  CAS  Google Scholar 

  15. Y. Li, F. Guo, Ma, H. Li, L. Chen, Y. Guo, Catal. Commun. 11, 839 (2010).https://doi.org/10.1016/j.catcom.2010.03.004.

  16. Y. Yang, Q. Wu, Y. Guo, Ch. Hu, E. Wang, J. Mol. Catal. A: Chem. 225, 203 (2005). https://doi.org/10.1016/j.molcata.2004.08.031

    Article  CAS  Google Scholar 

  17. P. Wang, Q-J Shan, L. Liu, C-Y. Zhao, L. Chen, J. Coord. Chem. 71, 457 (2018). doi:https://doi.org/10.1080/00958972.2018.1440393.

  18. E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zangeneh, J. Mat. Sci: Mater. Electron. 29, 20668 (2018). https://doi.org/10.1007/s10854-018-0205-8

    Article  CAS  Google Scholar 

  19. E. Rafiee, Z. Zolfagharifar, M. Joshaghani, S. Eavani, Afr. J. Chem. 65, 138 (2012)

    CAS  Google Scholar 

  20. T. Bezrodna, T. Gavrilko, G. Puchkovska, V. Shimanovska, J. Baran, M. Marchewka, J. Mol. Struct. 614, 315 (2002). https://doi.org/10.1016/S0022-2860(02)00266-1

    Article  CAS  Google Scholar 

  21. T. Gholami, N. Mir, M. Masjedi-Arani, E. Noori, M. Salavati-Niasari, Mat. Sci. Semicon. Proc. 22, 101 (2014). https://doi.org/10.1016/j.mssp.2014.01.013

    Article  CAS  Google Scholar 

  22. R. Saleh, N. Febiana Djaja, Micros. 74, 217 (2014). doi:https://doi.org/10.1016/j.spmi.2014.06.013

  23. M.A. Rauf, M.A. Meetani, S. Hisaindee, Desalination 276, 13 (2011). https://doi.org/10.1016/j.desal.2011.03.071

    Article  CAS  Google Scholar 

  24. M. Sohrabi, M. Ghavami, J. Hazard. Mater. 153, 1235 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.114

    Article  CAS  PubMed  Google Scholar 

  25. S. Bhardwaj, A. Pal, K. Chatterjee, P. Chowdhury, S. Saha, A. Barman, T.H. Rana, G.D. Sharma, S. Biswas, IJPAP 55, 73 (2017)

    Google Scholar 

  26. N. I. M. Rosli, S.M. Lam, J. Chung Sin, I. Satoshi, A.R. Mohamed, J. Environ. Eng. 144, 04017091 (2018). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001300.

  27. A.R. Soleymani, R. Chahardoli, M. Kaykhai, J. Ind. Eng. Chem. 44, 90 (2016). https://doi.org/10.1016/j.jiec.2016.08.009

    Article  CAS  Google Scholar 

  28. J. Saien, M. Asgari, A.R. Soleymani, N. Taghavinia, Chem. Eng. J. 151, 295 (2009). https://doi.org/10.1016/j.cej.2009.03.011

    Article  CAS  Google Scholar 

  29. S. Boumazaa, F. Kaouaha, D. Hamanea, M. Trari, S. Omeiri, Z. Bendjama, J. Mol. Catal. A Chem. 393, 156 (2014). https://doi.org/10.1016/j.molcata.2014.06.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Razi University Research Council and Iran National Science Foundation (INSF) for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezzat Rafiee.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiee, E., Noori, E., Zinatizadeh, A. et al. ([n-C4H9)4 N]3PMo2W9(Sn4+.xH2O)O39/TiO2): a new visible photocatalyst for photodegradation of DR16 characterization and optimization process by RSM. J IRAN CHEM SOC 18, 1761–1772 (2021). https://doi.org/10.1007/s13738-020-02149-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02149-w

Keywords

Navigation