Skip to main content
Log in

Pre-treatment of landfill leachate by biochar for the reduction of chemical oxygen demand: the effect of treatment time, temperature and biochar dose

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Landfill leachate is the liquid formed by the decomposition of waste in the landfill and infiltration of water through that waste. It contains high concentrations of ammonia and organic contaminants (measured in terms of chemical oxygen demand, COD). Biochar, produced from woody residues separated from municipal waste, was used for the reduction of COD of the leachate. The produced biochar was characterized by scanning electron microscopy, Raman spectroscopy, Brunauer–Emmett–Teller surface area analysis and x-ray photoelectron spectroscopy. By following response surface methodology and specifically the Box–Behnken design, the optimum conditions and effects of time, temperature and biochar dosage were determined. It was stated that biochar dosage was the most influential factor, whereas adsorption time and temperature had a lesser effect on the process. The optimum conditions for COD removal from the leachate were the following: treatment time 140 min, temperature 31 °C and biochar dosage of 1.95 g, where a 75.5% COD removal was achieved. At these conditions, the NH4+-N concentration was reduced by 23%. The spent biochar sample was regenerated by successively washing it with HF, ethanol and NaOH, and the regenerated sample achieved COD removal rates of 71%, indicating the potential for multiple uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BBD:

Box–Behnken design

RSM:

Response surface methodology

COD:

Chemical oxygen demand

MWB:

Mixed wood biochar

References

  1. C. Qi, J. Huang, B. Wang, S. Deng, Y. Wang, G. Yu, Emerg. Contam. 4, 1 (2018)

    Google Scholar 

  2. D. Baderna, F. Caloni, E. Benfenati, Environ. Int. 122, 21 (2019)

    CAS  PubMed  Google Scholar 

  3. H. Luo, Y. Zeng, Y. Cheng, D. He, X. Pan, Sci. Total Environ. 703, 135468 (2020)

    CAS  PubMed  Google Scholar 

  4. M. Han, X. Duan, G. Cao, S. Zhu, S.H. Ho, Process Saf. Environ. Prot. 139, 230 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. L. Hu, P. Wang, T. Shen, Q. Wang, X. Wang, P. Xu, Q. Zheng, G. Zhang, Sci. Total Environ. 722, 137831 (2020)

    CAS  PubMed  Google Scholar 

  6. M.A.M. Reshadi, A. Bazargan, G. McKay, Sci. Total Environ. 731, 138863 (2020)

    CAS  PubMed  Google Scholar 

  7. B.K. Tripathy, M. Kumar, J. Environ. Chem. Eng. 5, 6165 (2017)

    CAS  Google Scholar 

  8. S. Li, T. Hua, F. Li, Q. Zhou, J. Chem. Technol. Biotechnol. 95, 2083 (2020)

    CAS  Google Scholar 

  9. V. Torretta, N. Ferronato, I.A. Katsoyiannis, A.K. Tolkou, M. Airoldi, Sustainability 9, 9 (2017)

    Google Scholar 

  10. M. Riaz, M. Roohi, M.S. Arif, Q. Hussain, T. Yasmeen, T. Shahzad, S.M. Shahzad, H.F. Muhammad, M. Arif, M. Khalid, Geoderma 294, 19 (2017)

    CAS  Google Scholar 

  11. A. Rodríguez-Vila, R. Forján, R.S. Guedes, E.F. Covelo, J. Soils Sediments 17, 1653 (2017)

    Google Scholar 

  12. R. Forján, A. Rodríguez-Vila, E.F. Covelo, Waste Biomass Valori. 10, 103 (2019)

    Google Scholar 

  13. X. Chen, H.Z. He, G.K. Chen, H.S. Li, Sci. Rep. 10, 9528 (2020)

    PubMed  PubMed Central  Google Scholar 

  14. M. Hassan, Y. Liu, R. Naidu, S.J. Parikh, J. Du, F. Qi, I.R. Willett, Sci. Total Environ. 744, 140714 (2020)

    CAS  PubMed  Google Scholar 

  15. D. Kalderis, S. Tsuchiya, K. Phillipou, P. Paschalidou, I. Pashalidis, D. Tashima, T. Tsubota, Bioresour. Technol. Rep. 9, 100384 (2020)

    Google Scholar 

  16. M.J.K. Bashir, J.W. Wong, S. Sethupathi, N.C. Aun, L.J. Wei, MATEC Web Conf. 103, 06008 (2017)

    Google Scholar 

  17. A. Kwarciak-Kozłowska, R. Włodarczyk and K. Wystalska, E3S Web Conf. 100, 00042 (2019)

  18. B. Aftab, Y.S. Ok, J. Cho, J. Hur, Water Res. 160, 217 (2019)

    CAS  PubMed  Google Scholar 

  19. S.M.R. Joseph, P. Wijekoon, B. Dilsharan, N.D. Punchihewa, B.C.L. Athapattu, M. Vithanage, Environ. Res. 189, 109880 (2020)

    CAS  PubMed  Google Scholar 

  20. Y. Luo, R. Li, X. Sun, X. Liu, D. Li, Bioresour. Technol. 288, 121533 (2019)

    CAS  PubMed  Google Scholar 

  21. G.N. Paranavithana, K. Kawamoto, Y. Inoue, T. Saito, M. Vithanage, C.S. Kalpage, G.B.B. Herath, Environ. Earth Sci. 75, 484 (2016)

    Google Scholar 

  22. S. Morris, G. Garcia-Cabellos, D. Ryan, D. Enright, A.M. Enright, J. Environ. Sci. Health A 54, 1233 (2019)

    CAS  Google Scholar 

  23. A. Zabaniotou, D. Rovas, A. Libutti, M. Monteleone, Environ. Dev. 14, 22 (2015)

    Google Scholar 

  24. S. Bolognesi, G. Bernardi, A. Callegari, D. Dondi, A.G. Capodaglio, Biomass Conv. Bioref. (2019). https://doi.org/10.1007/s13399-019-00572-5

    Article  Google Scholar 

  25. D. Nayeri, S.A. Mousavi, A. Mehrabi, J. Appl. Res. Water Wastewater 6, 67 (2019)

    Google Scholar 

  26. Y. Jayawardhana, S.S. Mayakaduwa, P. Kumarathilaka, S. Gamage, M. Vithanage, Environ. Geochem. Health 41, 1739 (2019)

    CAS  PubMed  Google Scholar 

  27. V. Gunarathne, A. Ashiq, S. Ramanayaka, P. Wijekoon, M. Vithanage, Environ. Chem. Lett. 17, 1225 (2019)

    CAS  Google Scholar 

  28. A. Raziani and A. Mohammadidoust, J. Appl. Res. Water Wastewater (2020) https://doi.org/10.22126/arww.2020.4897.1155

  29. B. Jalili, S.M. Borghei, V. Vatanpour, C. Sarkizi, J. Appl. Res. Water Wastewater 5, 421 (2018)

    Google Scholar 

  30. G. Cornelissen, N.R. Pandit, P. Taylor, B.H. Pandit, M. Sparrevik, H.P. Schmidt, PLoS ONE 11, 5 (2016)

    Google Scholar 

  31. APHA, AWWA, WEF, in Standard methods for examination of water and wastewater, E. W. Rice, R. B. Baird, A. D. Eaton and L. S. Clesceri Eds. (American Public Health Association, Washington, 2012), s. 1360

  32. N. Ghasemzadeh, M. Ghadiri, A. Behroozsarand, Adv. Environ. Technol. 1, 45 (2017)

    Google Scholar 

  33. N. Gómez, J.G. Rosas, J. Cara, O. Martínez, J.A. Alburquerque, M.E. Sánchez, J. Clean. Prod. 120, 181 (2016)

    Google Scholar 

  34. J.-H. Park, J.J. Wang, S.-H. Kim, S.-W. Kang, Y.C. Jeong, J.-R. Jeon, K.H. Park, J.-S. Cho, R.D. Delaune, D.-C. Seo, J. Colloid Interf. Sci. 553, 298 (2019)

    CAS  Google Scholar 

  35. G. Enaime, A. Baçaoui, A. Yaacoubi, M. Lübken, Appl. Sci. 10, 3492 (2020)

    CAS  Google Scholar 

  36. W. Xiang, X. Zhang, J. Chen, W. Zou, F. He, X. Hu, D.C.W. Tsang, Y.S. Ok, B. Gao, Chemosphere 252, 126539 (2020)

    CAS  PubMed  Google Scholar 

  37. M.J. Ahmed, B.H. Hameed, J. Clean. Prod. 265, 121762 (2020)

    CAS  Google Scholar 

  38. P.A. da Silva Veiga, J. Schultz, T.T. da Silva Matos, M.R. Fornari, T.G. Costa, L. Meurer, A.S. Mangrich, J. Anal. Appl. Pyrolysis 148, 104823 (2020)

    Google Scholar 

  39. P. Kim, A. Johnson, C.W. Edmunds, M. Radosevich, F. Vogt, T.G. Rials, N. Labbé, Energ. Fuel. 25, 4693 (2011)

    CAS  Google Scholar 

  40. G. Guyo, J. Mhonyera, M. Moyo, Process Saf. Environ. 93, 192 (2015)

    CAS  Google Scholar 

  41. D. Kalderis, B. Kayan, S. Akay, E. Kulaksız, B. Gözmen, J. Environ. Chem. Eng. 5, 2222 (2017)

    CAS  Google Scholar 

  42. M. Dastkhoon, M. Ghaedi, A. Asfaram, A. Goudarzi, S.M. Langroodi, I. Tyagi, S. Agarwal, V.K. Gupta, Sep. Purif. Technol. 156, 780 (2015)

    CAS  Google Scholar 

  43. E.A. Dil, M. Ghaedi, A. Asfaram, Ultrason. Sonochem. 34, 27 (2017)

    Google Scholar 

  44. A. Khataee, B. Kayan, D. Kalderis, A. Karimi, S. Akay, M. Konsolakis, Ultrason. Sonochem. 35, 72 (2017)

    CAS  PubMed  Google Scholar 

  45. Y.L. Song, J.T. Li, Ultrason. Sonochem. 16, 440 (2009)

    CAS  PubMed  Google Scholar 

  46. K.S. Suslick, Science 247, 1439 (1990)

    CAS  PubMed  Google Scholar 

  47. C.D. Wu, Z.L. Zhang, Y. Wu, L. Wang, L.J. Chen, Desalin. Water Treat. 53, 462 (2015)

    CAS  Google Scholar 

  48. M.A. Beckett, I. Hua, Environ. Sci. Technol. 34, 3944 (2000)

    CAS  Google Scholar 

  49. M. Gągol, A. Przyjazny, G. Boczkaj, Chem. Eng. J. 338, 599 (2018)

    Google Scholar 

  50. A.J. Barik, P.R. Gogate, Ultrason. Sonochem. 30, 70 (2016)

    CAS  PubMed  Google Scholar 

  51. G. Zhang, L. Qin, Q. Meng, Z. Fan, D. Wu, Bioresour. Technol. 142, 261 (2013)

    CAS  PubMed  Google Scholar 

  52. A. Altin, Sep. Purif. Technol. 61, 391 (2008)

    CAS  Google Scholar 

  53. P. Asaithambi, R. Govindarajan, M.B. Yesuf, E. Alemayehu, Sep. Purif. Technol. 233, 115935 (2020)

    CAS  Google Scholar 

  54. S.S.A. Amr, H.A. Aziz, Waste Manage. 32, 1693 (2012)

    Google Scholar 

  55. R. Chemlal, N. Abdi, N. Drouiche, H. Lounici, A. Pauss, N. Mameri, Ecol. Eng. 51, 244 (2013)

    Google Scholar 

  56. J.M. Hur, S.H. Kim, Z. Korean, Chem. Eng. 17, 433 (2000)

    CAS  Google Scholar 

  57. A. Lopez, M. Pagano, A. Volpe, A.C.D. Pinto, Chemosphere 54, 1005 (2004)

    CAS  PubMed  Google Scholar 

  58. M. Vithanage, A.U. Rajapaksha, X. Tang, S. Thiele-Bruhn, K.H. Kim, S.-E. Lee, Y.S. Ok, J. Environ. Manage. 141, 95 (2014)

    CAS  PubMed  Google Scholar 

  59. G. Xu, Y. Lv, J. Sun, H. Shao, L. Wei, CLEAN Soil Air Water 40, 1093 (2012)

    CAS  Google Scholar 

  60. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Chemosphere 99, 19 (2014)

    CAS  PubMed  Google Scholar 

  61. B.P. Singh, A.L. Cowie, R.J. Smernik, Environ. Sci. Technol. 46, 11770 (2012)

    CAS  PubMed  Google Scholar 

  62. W. Wu, M. Yang, Q. Feng, K. McGrouther, H. Wang, H. Lu, Y. Chen, Biomass Bioenerg. 47, 268 (2012)

    CAS  Google Scholar 

  63. L. Han, K.S. Ro, K. Sun, H. Sun, Z. Wang, J.A. Libra, B. Xing, Environ. Sci. Technol. 50, 13274 (2016)

    CAS  PubMed  Google Scholar 

  64. F.M. Ferraz, Q. Yuan, J. Water Process Eng. 33, 101040 (2020)

    Google Scholar 

  65. M. Vedrenne, R. Vasquez-Medrano, D. Prato-Garcia, B.A. Frontana-Uribe, J.G. Ibanez, J. Hazard. Mater. 205–206, 208 (2012)

    PubMed  Google Scholar 

  66. S.P. Cho, S.C. Hong, S.I. Hong, Appl. Catal. B 39, 125 (2002)

    CAS  Google Scholar 

  67. Z. Wang, J. Li, W. Tan, X. Wu, H. Lin, H. Zhang, Sep. Purif. Technol. 208, 3 (2019)

    CAS  Google Scholar 

  68. C. Ratanatamskul, P. Auesuntrachun, Int. J. Environ. Waste Manag. 4, 470 (2009)

    CAS  Google Scholar 

  69. R. Li, B. Wang, O. Owete, J. Dertien, C. Lin, H. Ahmad, G. Chen, Water Environ. Res. 89, 2015 (2017)

    CAS  PubMed  Google Scholar 

  70. E. Turro, A. Giannis, R. Cossu, E. Gidarakos, D. Mantzavinos, A. Katsaounis, J. Hazard. Mater. 190, 460 (2011)

    CAS  PubMed  Google Scholar 

  71. A.G. Vlyssides, P.K. Karlis, G. Mahnken, J. Appl. Electrochem. 33, 155 (2003)

    CAS  Google Scholar 

  72. A.P.J. Scandelai, J.P. Zotesso, V. Jegatheesan, L. Cardozo-Filho, C.R.G. Tavares, Waste Manage. 101, 259 (2020)

    CAS  Google Scholar 

  73. M.A. Rosli, Z. Daud, M.B. Ridzuan, N.A.A. Aziz, H.B. Awang, A.O. Adeleke, K. Hossain, N. Ismail, Desalin. Water Treat. 160, 185 (2019)

    CAS  Google Scholar 

  74. F.M. Ferraz, Q. Yuan, Sustainable. Mater. Technol. 23, e00141 (2020)

    CAS  Google Scholar 

  75. R. Poblete, I. Oller, M.I. Maldonado, Y. Luna, E. Cortes, J. Environ. Chem. Eng. 5, 114 (2017)

    CAS  Google Scholar 

  76. A.A. Sari, F. Amriani, M. Muryanto, E. Triwulandari, Y. Sudiyani, V. Barlianti, P.D.N. Lotulung, T. Hadibarata, J. Taiwan Inst. Chem. Eng. 77, 236 (2017)

    CAS  Google Scholar 

  77. K. Kaur, S. Mor, K. Ravindra, J. Colloid Interface Sci. 469, 338 (2016)

    CAS  PubMed  Google Scholar 

  78. S.S. Lam, P.N.Y. Yek, Y.S. Ok, C.C. Chong, R.K. Liew, D.C.W. Tsang, Y.-K. Park, Z. Liu, C.S. Wong, W. Peng, J. Hazard. Mater. 390, 121649 (2020)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author gratefully thanks Prof. Dr. Belgin Gözmen Sönmez and Dr. Dimitrios Kalderis for their support.

Funding

The author received no financial support for the research, authorship and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sema Akay.

Ethics declarations

Conflict of interests

The author declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Human and animal rights

This article does not involve any animal or human experiments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akay, S. Pre-treatment of landfill leachate by biochar for the reduction of chemical oxygen demand: the effect of treatment time, temperature and biochar dose. J IRAN CHEM SOC 18, 1729–1739 (2021). https://doi.org/10.1007/s13738-020-02145-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02145-0

Keywords

Navigation