Skip to main content
Log in

Defect Localization Using Nonlinear Lamb Wave Mixing Technique

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Structural health monitoring using nonlinear guided waves have found to be of great importance. The detection of micro/fatigue cracks in the early stage is essential to avoid catastrophic failures. This paper presents a defect localization technique using nonlinear interaction primary Lamb wave modes. The nonlinearity employed here is due to clapping behaviour of crack surfaces. Two counter-propagating Lamb waves with dissimilar frequencies are allowed to mix at various locations. The results show that the sensitivity of nonlinearity due to crack wave interaction increases when Lamb wave mixing occurs at the fault zone. To study the extent of nonlinearity on damage size, studies were also conducted on plates with different crack parameters. The study reveals that the nonlinear Lamb wave mixing technique can be used effectively to detect and localize micro-crack in plate-like structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Santoni, G.B., Yu, L., Xu, B., Giurgiutiu, V.: Lamb wave-mode tuning of piezoelectric wafer active sensors for structural health monitoring. J. Vib. Acoust. 129, 752–762 (2007)

    Article  Google Scholar 

  2. Mitra, M., Gopalakrishnan, S.: Guided wave based structural health monitoring: a review. Smart Mater. Struct. 25, 053001 (2016)

    Article  Google Scholar 

  3. Pei, N., Bond, L.J.: Higher order acoustoelastic Lamb wave propagation in stressed plates. J. Acoust. Soc. Am. 140, 3834–3843 (2016)

    Article  Google Scholar 

  4. Tua, P.S., Quek, S.T., Wang, Q.: Detection of cracks in plates using Piezo-actuated Lamb waves. Smart Mater. Struct. 13, 643 (2004)

    Article  Google Scholar 

  5. Venugopal, V.P., Wang, G.: Modeling and analysis of Lamb wave propagation in a beam under lead zirconate titanate actuation and sensing. J. Intell. Mater. Syst. Struct. 26, 1679–1698 (2015)

    Article  Google Scholar 

  6. Zhang, G., Gao, W., Song, G., Song, Y.: An imaging algorithm for damage detection with dispersion compensation using piezoceramic induced lamb waves. Smart Mater. Struct. 26, 025017 (2016)

    Article  Google Scholar 

  7. Wang, D., Zhang, W., Wang, X., Sun, B.: Lamb-wave-based tomographic imaging techniques for hole-edge corrosion monitoring in plate structures. Materials 9, 916 (2016)

    Article  Google Scholar 

  8. Leleux, A., Micheau, P., Castaings, M.: Long range detection of defects in composite plates using Lamb waves generated and detected by ultrasonic phased array probes. J. Nondestr. Eval. 32, 200–214 (2013)

    Article  Google Scholar 

  9. Ghadami, A., Behzad, M., Mirdamadi, H.R.: A mode conversion-based algorithm for detecting rectangular notch parameters in plates using Lamb waves. Arch. Appl. Mech. 85, 793–804 (2015)

    Article  Google Scholar 

  10. Ebrahimkhanlou, A., Dubuc, B., Salamone, S.: Damage localization in metallic plate structures using edge-reflected lamb waves. Smart Mater. Struct. 25, 085035 (2016)

    Article  Google Scholar 

  11. Mori, N., Biwa, S.: Transmission characteristics of the S0 and A0 Lamb waves at contacting edges of plates. Ultrasonics 81, 93–99 (2017)

    Article  Google Scholar 

  12. Soleimanpour, R., Ng, C.T.: Scattering of the fundamental anti-symmetric Lamb wave at through-thickness notches in isotropic plates. J. Civil Struct. Health Monit. 6, 447–459 (2016)

    Article  Google Scholar 

  13. Sohn, H.: Effects of environmental and operational variability on structural health monitoring. Philos. Trans. R. Soc. A 365, 539–560 (2006)

    Article  Google Scholar 

  14. Salmanpour, M.S., Sharif Khodaei, Z., Aliabadi, M.H.: Guided wave temperature correction methods in structural health monitoring. J. Intell. Mater. Syst. Struct. 28, 604–618 (2017)

    Article  Google Scholar 

  15. Soleimanpour, R., Ng, C.T., Wang, C.H.: Higher harmonic generation of guided waves at delaminations in laminated composite beams. Struct. Health Monit. 16, 400–417 (2017)

    Article  Google Scholar 

  16. Zuo, P., Zhou, Y., Fan, Z.: Numerical and experimental investigation of nonlinear ultrasonic Lamb waves at low frequency. Appl. Phys. Lett. 109, 021902 (2016)

    Article  Google Scholar 

  17. Jhang, K.Y.: Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. Intl. J. Precis. Eng. Manuf. 10, 123–135 (2009)

    Article  Google Scholar 

  18. Matsuda, N., Biwa, S.: Frequency dependence of second-harmonic generation in Lamb waves. J. Nondestr. Eval. 33, 169–177 (2014)

    Article  Google Scholar 

  19. Bermes, C., Kim, J.Y., Qu, J., Jacobs, L.J.: Experimental characterization of material nonlinearity using Lamb waves. Appl. Phys. Lett. 90, 021901 (2007)

    Article  Google Scholar 

  20. Hong, M., Su, Z., Lu, Y., Sohn, H., Qing, X.: Locating fatigue damage using temporal signal features of nonlinear Lamb waves. Mech. Syst. Signal Process. 60, 182–197 (2015)

    Article  Google Scholar 

  21. Zhao, Y., Li, F., Cao, P., Liu, Y., Zhang, J., Fu, S., Zhang, J., Hu, N.: Generation mechanism of nonlinear ultrasonic Lamb waves in thin plates with randomly distributed micro-cracks. Ultrasonics 79, 60–67 (2017)

    Article  Google Scholar 

  22. Hong, M., Mao, Z., Todd, M.D., Su, Z.: Uncertainty quantification for acoustic nonlinearity parameter in Lamb wave-based prediction of barely visible impact damage in composites. Mech. Syst. Signal Process. 82, 448–460 (2017)

    Article  Google Scholar 

  23. Mostavi, A., Kamali, N., Tehrani, N., Chi, S.W., Ozevin, D., Indacochea, J.E.: Wavelet based harmonics decomposition of ultrasonic signal in assessment of plastic strain in aluminum. Measurement 106, 66–78 (2017)

    Article  Google Scholar 

  24. Croxford, A.J., Wilcox, P.D., Drinkwater, B.W., Nagy, P.B.: The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. J. Acoust. Soc. Am. 126, 117–122 (2009)

    Article  Google Scholar 

  25. Liu, M., Tang, G., Jacobs, L.J., Qu, J.: Measuring acoustic nonlinearity parameter using collinear wave mixing. J. Appl. Phys. 112, 024908 (2012)

    Article  Google Scholar 

  26. Ju, T., Achenbach, J.D., Jacobs, L.J., Qu, J.: Nondestructive evaluation of thermal aging of adhesive joints by using a nonlinear wave mixing technique. NDT E Int. 103, 62–67 (2019)

    Article  Google Scholar 

  27. Gallot, T., Malcolm, A., Szabo, T.L., Brown, S., Burns, D., Fehler, M.: Characterizing the nonlinear interaction of S-and P-waves in a rock sample. J. Appl. Phys. 117, 034902 (2015)

    Article  Google Scholar 

  28. Lv, H., Zhang, J., Jiao, J., Croxford, A.: Fatigue crack inspection and characterisation using non-collinear shear wave mixing. Smart Mater. Struct. 29, 055024 (2020)

    Article  Google Scholar 

  29. Hasanian, M., Lissenden, C.J.: Second order harmonic guided wave mutual interactions in plate: vector analysis, numerical simulation, and experimental results. J. Appl. Phys. 122, 084901 (2017)

    Article  Google Scholar 

  30. Metya, A.K., Tarafder, S., Balasubramaniam, K.: Nonlinear Lamb wave mixing for assessing localized deformation during creep. NDT E Int. 98, 89–94 (2018)

    Article  Google Scholar 

  31. Li, F., Zhao, Y., Cao, P., Hu, N.: Mixing of ultrasonic Lamb waves in thin plates with quadratic nonlinearity. Ultrasonics 87, 33–43 (2018)

    Article  Google Scholar 

  32. Jingpin, J., Xiangji, M., Cunfu, H., Bin, W.: Nonlinear Lamb wave-mixing technique for micro-crack detection in plates. NDT E Int. 85, 63–71 (2017)

    Article  Google Scholar 

  33. Aslam, M., Bijudas, C.R., Nagarajan, P., Remanan, M.: Numerical and experimental investigation of nonlinear lamb wave mixing at low frequency. J. Aerosp. Eng. 33, 04020037 (2020)

    Article  Google Scholar 

  34. Chillara, V.K., Lissenden, C.J.: Nonlinear guided waves in plates: a numerical perspective. Ultrasonics 54, 1553–1558 (2014)

    Article  Google Scholar 

  35. Rose, J.L.: Ultrasonic guided waves in solid media. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  36. Solodov, I.Y., Krohn, N., Busse, G.: CAN: an example of non-classical acoustic nonlinearity in solids. Ultrasonics 40, 621–625 (2002)

    Article  Google Scholar 

  37. Ishii, Y., Biwa, S., Adachi, T.: Non-collinear interaction of guided elastic waves in an isotropic plate. J. Sound Vib. 419, 390–404 (2018)

    Article  Google Scholar 

  38. Li, W., Deng, M., Hu, N., Xiang, Y.: Theoretical analysis and experimental observation of frequency mixing response of ultrasonic Lamb waves. J. Appl. Phys. 124, 044901 (2018)

    Article  Google Scholar 

  39. Yang, C., Ye, L., Su, Z., Bannister, M.: Some aspects of numerical simulation for Lamb wave propagation in composite laminates. Compos. Struct. 75, 267–275 (2006)

    Article  Google Scholar 

  40. Drozdz, M., Moreau, L., Castaings, M., Lowe, M.J.S., Cawley, P.: March. Efficient numerical modelling of absorbing regions for boundaries of guided waves problems. AIP Conf. Proc. 820, 126–133 (2006)

    Article  Google Scholar 

  41. Manual, A.U.: Version 6.13-2. Providence, Dassault Systémes Simulia Corp. (2013)

    Google Scholar 

  42. Guan, L., Zou, M., Wan, X., Li, Y.: Nonlinear Lamb wave micro-crack direction identification in plates with mixed-frequency technique. Appl. Sci. 10, 2135 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Aslam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M., Nagarajan, P. & Remanan, M. Defect Localization Using Nonlinear Lamb Wave Mixing Technique. J Nondestruct Eval 40, 16 (2021). https://doi.org/10.1007/s10921-020-00747-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-020-00747-5

Keywords

Navigation