Skip to main content

Advertisement

Log in

Impact of Galactoxyloglucan Coated Iron Oxide Nanoparticles on Reactive Oxygen Species Generation and Magnetic Resonance Imaging for Tumor Management

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Cancer therapy triggered by various cell death pathways has attracted widespread attention to improve therapeutic efficiency. Herein, an immunomodulatory polysaccharide (galactoxyloglucan) coated iron oxide nanoconjugate, with a diameter of about 10 nm, is made-up to intracellularly trigger the Fenton reaction and achieve cell death. The nanoconjugate based on iron oxide nanoparticles (PIONPs) exhibits excellent biocompatibility, stability and can be used as an imaging agent. Moreover, importantly it can effectively generate reactive oxygen species (ROS) for tumor eradication with no systemic toxicity. In vitro and In vivo experiments reveal that the PIONPs can intratumorally accumulate and serves as an excellent MRI contrast agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.-Q. Chen, et al. (2019). Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 27, 242–254.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Y. Mou, et al. (2019). Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J. Hematol. Oncol. 12 (1), 34.

    Article  PubMed  PubMed Central  Google Scholar 

  3. S. M. Dadfar, et al. (2019). Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 138, 302–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Y. Bao, J. Sherwood, and Z. Sun (2018). Magnetic iron oxide nanoparticles as T 1 contrast agents for magnetic resonance imaging. J. Mater. Chem. C 6 (6), 1280–1290.

    Article  CAS  Google Scholar 

  5. J. M. Richards, et al. (2012). In vivo mononuclear cell tracking using superparamagnetic particles of iron oxide: feasibility and safety in humans. Circulation 5 (4), 509–517.

    PubMed  Google Scholar 

  6. M. G. Harisinghani, et al. (2003). Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348 (25), 2491–2499.

    Article  PubMed  Google Scholar 

  7. Y.-X.J. Wang, S. M. Hussain, and G. P. Krestin (2001). Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur. Radiol. 11 (11), 2319–2331.

    Article  CAS  PubMed  Google Scholar 

  8. H. Unterweger, et al. (2018). Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: evaluation of size-dependent imaging properties, storage stability and safety. Int. J. Nanomed. 13, 1899.

    Article  CAS  Google Scholar 

  9. A. Frtús, et al. (2020). Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. J. Control. Rel. 328, 59–77.

    Article  Google Scholar 

  10. Y. X. J. Wáng and J.-M. Idée (2017). A comprehensive literature update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant. Imaging Med. Surg. 7 (1), 88.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Y.-X.J. Wang (2011). Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant. Imaging Med. Surg 1 (1), 35.

    PubMed  PubMed Central  Google Scholar 

  12. H. Nosrati, et al. (2019). New insight about biocompatibility and biodegradability of iron oxide magnetic nanoparticles: stereological and in vivo MRI monitor. Sci. Rep. 9 (1), 7173.

    Article  PubMed  PubMed Central  Google Scholar 

  13. X. Qian, et al. (2019). Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials 211, 1–13.

    Article  CAS  PubMed  Google Scholar 

  14. H.-J. Chung, H.-J. Kim, and S.-T. Hong (2019). Iron-dextran as a thermosensitizer in radiofrequency hyperthermia for cancer treatment. Appl. Biol. Chem. 62 (1), 24.

    Article  Google Scholar 

  15. I. Cicha et al (2018) P6481 Novel dextran-coated ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs)-a safe contrast agent for magnetic resonance imaging of atherosclerosis. Eur. Heart J. 39(1):ehy566. P6481.

  16. M. B. Mulder, et al. (2019). Comparison of hypersensitivity reactions of intravenous iron: iron isomaltoside-1000 (Monofer®) versus ferric carboxy-maltose (Ferinject®). A single center, cohort study. Br. J. Clin. Pharmacol. 85 (2), 385–392.

    Article  CAS  PubMed  Google Scholar 

  17. Ö. Özdemir and M. Büyükavcı (2018). Development of hypersensitivity reactions after using different oral iron preparations. Istanbul Med. J. 19 (2), 168–171.

    Article  Google Scholar 

  18. B. Unnikrishnan, et al. (2019). Fabrication of fluorescein labeled galactoxyloglucan polysaccharide for tumor and macrophage tagging. J. Drug Deliv. Sci. Technol. 52, 863–869.

    Article  Google Scholar 

  19. S. Aravind, et al. (2015). TRAIL-based tumor sensitizing galactoxyloglucan, a novel entity for targeting apoptotic machinery. Int. J. Biochem. Cell Biol. 59, 153–166.

    Article  CAS  PubMed  Google Scholar 

  20. P. Rao, T. Ghosh, and S. Krishna (1946). Extraction and purification of tamarind seed polysaccharide. J. Sci. Ind. Res. 4, 705.

    Google Scholar 

  21. N. Remya, et al. (2016). Toxicity, toxicokinetics and biodistribution of dextran stabilized iron oxide nanoparticles for biomedical applications. Int. J. Pharm. 511 (1), 586–598.

    Article  CAS  PubMed  Google Scholar 

  22. A. K. Hauser, et al. (2015). The effects of synthesis method on the physical and chemical properties of dextran coated iron oxide nanoparticles. Mater. Chem. Phys. 160, 177–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A. Saraswathy, et al. (2014). Synthesis and characterization of dextran stabilized superparamagnetic iron oxide nanoparticles for in vivo MR imaging of liver fibrosis. Carbohydr. Polym. 101, 760–768.

    Article  CAS  PubMed  Google Scholar 

  24. M. M. Joseph, et al. (2013). PST-Gold nanoparticle as an effective anticancer agent with immunomodulatory properties. Colloids Surf. 104, 32–39.

    Article  CAS  Google Scholar 

  25. M. M. Joseph, et al. (2017). Exploration of biogenic nano-chemobiotics fabricated by silver nanoparticle and galactoxyloglucan with an efficient biodistribution in solid tumor investigated by SERS fingerprinting. ACS Appl. Mater. Interfaces 9 (23), 19578–19590.

    Article  CAS  PubMed  Google Scholar 

  26. M.-B. Troadec, et al. (2006). Hepatocyte iron loading capacity is associated with differentiation and repression of motility in the HepaRG cell line. Genomics 87 (1), 93–103.

    Article  CAS  PubMed  Google Scholar 

  27. M. Calero, et al. (2015). Characterization of interaction of magnetic nanoparticles with breast cancer cells. J. Nanobiotechnol. 13 (1), 16.

    Article  Google Scholar 

  28. M. Rosário, et al. (2008). Effect of storage xyloglucans on peritoneal macrophages. Phytochemistry 69 (2), 464–472.

    Article  PubMed  Google Scholar 

  29. M. M. T. do Rosário, et al. (2011). Storage xyloglucans: potent macrophages activators. Chem.-Biol. Interact. 189 (12), 127–133.

    Article  PubMed  Google Scholar 

  30. M. M. Joseph, et al. (2014). Antitumor activity of galactoxyloglucan-gold nanoparticles against murine ascites and solid carcinoma. Colloids Surf. B 116, 219–227.

    Article  CAS  Google Scholar 

  31. C. Pardo-Castaño and G. Bolaños (2019). Solubility of chitosan in aqueous acetic acid and pressurized carbon dioxide-water: experimental equilibrium and solubilization kinetics. J. Supercrit. Fluids 151, 63–74.

    Article  Google Scholar 

  32. S. L. Easo and P. Mohanan (2015). In vitro hematological and in vivo immunotoxicity assessment of dextran stabilized iron oxide nanoparticles. Colloids Surf. B 134, 122–130.

    Article  CAS  Google Scholar 

  33. S. Ahmad, S. Shankar, and A. Mishra (2019). Ferromagnetic xyloglucan–Fe 3 O 4 green nanocomposites: sonochemical synthesis, characterization and application in removal of methylene blue from water. Environ. Sustain. 3, 15–22.

    Article  Google Scholar 

  34. C. Fang, et al. (2009). Functionalized nanoparticles with long-term stability in biological media. Small 5 (14), 1637–1641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. T. Cedervall, et al. (2007). Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. 104 (7), 2050–2055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Linse, et al. (2007). Nucleation of protein fibrillation by nanoparticles. Proc. Natl. Acad. Sci. 104 (21), 8691–8696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. C. Röcker, et al. (2009). A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotechnol. 4 (9), 577–580.

    Article  PubMed  Google Scholar 

  38. A. E. Nel, et al. (2009). Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8 (7), 543–557.

    Article  CAS  PubMed  Google Scholar 

  39. A. Lesniak, et al. (2010). Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials 31 (36), 9511–9518.

    Article  CAS  PubMed  Google Scholar 

  40. S. Bhattacharjee (2016). DLS and zeta potential–what they are and what they are not? J. Control. Rel. 235, 337–351.

    Article  CAS  Google Scholar 

  41. S. Xie, et al. (2015). Superparamagnetic iron oxide nanoparticles coated with different polymers and their MRI contrast effects in the mouse brains. Appl. Surf. Sci. 326, 32–38.

    Article  CAS  Google Scholar 

  42. C. Hui, et al. (2008). Large-scale Fe 3O 4 nanoparticles soluble in water synthesized by a facile method. J. Phys. Chem. C 112 (30), 11336–11339.

    Article  CAS  Google Scholar 

  43. M. Peng, et al. (2015). Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo. Nanoscale 7 (25), 11155–11162.

    Article  CAS  PubMed  Google Scholar 

  44. J. A. Pellicer, et al. (2019). Adsorption properties of β-and hydroxypropyl-β-cyclodextrins cross-linked with epichlorohydrin in aqueous solution. A sustainable recycling strategy in textile dyeing process. Polymers 11 (2), 252.

    Article  PubMed Central  Google Scholar 

  45. V. Silva, et al. (2013). Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J. Magn. Magn. Mater. 343, 138–143.

    Article  CAS  Google Scholar 

  46. O. Lemine, et al. (2012). Sol–gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlattices Microstruct. 52 (4), 793–799.

    Article  CAS  Google Scholar 

  47. Y. Cao, et al. (2010). Self-assembled nanoparticle drug delivery systems from galactosylated polysaccharide–doxorubicin conjugate loaded doxorubicin. Int. J. Biol. Macromol. 46 (2), 245–249.

    Article  CAS  PubMed  Google Scholar 

  48. X. Xie, et al. (2016). Targeted nanoparticles from xyloglucan–doxorubicin conjugate loaded with doxorubicin against drug resistance. RSC Adv. 6 (31), 26137–26146.

    Article  CAS  Google Scholar 

  49. L. Bhumarkar, A. Arkhel, and S. Ramteke (2014). Formulation design and evaluation of xyloglucan microsphere of silymarin. Pharma Innov. 3 (4), 92.

    CAS  Google Scholar 

  50. A. D. Springer and S. F. Dowdy (2018). GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Ther. 28 (3), 109–118.

    Article  CAS  Google Scholar 

  51. G. Huang, et al. (2013). Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 3 (2), 116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. X. Lin, et al. (2020). The mechanism of ferroptosis and applications in tumor treatment. Front. Pharmacol. 11, 1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. K. Levada, et al. (2020). Progressive lysosomal membrane permeabilization induced by iron oxide nanoparticles drives hepatic cell autophagy and apoptosis. Nano Converg. 7 (1), 1–17.

    Article  Google Scholar 

  54. T. Yin, et al. (2017). In vivo targeted therapy of gastric tumors via the mechanical rotation of a flower-like Fe 3 O 4@ Au nanoprobe under an alternating magnetic field. NPG Asia Mater. 9 (7), e408.

    Article  CAS  Google Scholar 

  55. G. Baldi, et al. (2014). In vivo anticancer evaluation of the hyperthermic efficacy of anti-human epidermal growth factor receptor-targeted PEG-based nanocarrier containing magnetic nanoparticles. Int. J. Nanomed. 9, 3037.

    CAS  Google Scholar 

  56. M. Costa da Silva, et al. (2017). Iron induces anti-tumor activity in tumor-associated macrophages. Front. Immunol. 8, 1479.

    Article  PubMed  PubMed Central  Google Scholar 

  57. A. Carobene, et al. (2013). A systematic review of data on biological variation for alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transferase. Clin. Chem. Labor. Med. 51 (10), 1997–2007.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors UBS, and PGU thanks University Grants Commission (UGC), Govt. of India for the research fellowships. Authors acknowledge Mr.Udayakumar KR, Radiodiagnosis Department for MRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. T. Sreelekha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

(DOCX 9418 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unnikrishnan, B.S., Preethi, G.U., Anitha, S. et al. Impact of Galactoxyloglucan Coated Iron Oxide Nanoparticles on Reactive Oxygen Species Generation and Magnetic Resonance Imaging for Tumor Management. J Clust Sci 33, 361–374 (2022). https://doi.org/10.1007/s10876-020-01971-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01971-9

Keywords

Navigation